
The 12th International Workshop on SEquences and

Their Applications (SETA)

July 01-05, 2024

Colchester, United Kingdom

PRE-PROCEEDINGS



Preface

This volume contains the pre-proceedings of the 12th international conference on SEquences and Their

Applications (SETA) which takes place in Colchester, United Kingdom, July 01-05, 2024. The conference

SETA-2024 is co-organized by the University of Essex, Colchester, United Kingdom and University of

Bergen, Bergen, Norway.

SEquences and Their Applications is an internationally leading conference, aiming to foster fruit-

ful interactions among sequences, signals, and waveforms designers, mathematicians, coding theorists,

cryptographic researchers, and communications practitioners from all over the world. This esteemed con-

ference has been hosted in a variety of international locales: SETA-1998 (Singapore), SETA-2001 (Bergen

Norway), SETA-2004 (Seoul, South Korea), SETA-2006 (Beijing China), SETA-2008 (Lexington USA),

SETA-2010 (Paris France), SETA-2012 (Waterloo Canada), SETA-2014 (Melbourne, Australia), SETA-

2016 (Chengdu, China), SETA-2018 (HongKong China), SETA-2020 online (Bergen Norway).

We are very pleased to have five keynote talks by Pingzhi Fan (IEEE Fellow, IET/CIE/CIC Fel-

low, Chair Professor) from the Southwest Jiaotong University, China, Sihem Mesnager (Professor of

Mathematics) from the University of Paris VIII, University Sorbonne Paris Nord, and CNRS, France,

Christos Masouros (IEEE Fellow) from the University College London, United Kingdom, Steven (Qiang)

Wang (Professor of Mathematics) from the Carleton University, Canada, and Nam Yul Yu (IEEE Senior

Member) from the Gwangju Institute of Science and Technology (GIST), South Korea; and two invited

featured talks by Wai Ho Mow (IEEE Senior Member) from the Hong Kong University of Science and

Technology, China and Pantelimon Stănică from the Naval Postgraduate School, United States.

This pre-proceedings embraces the abstracts of the invited talks and extended abstracts that have

been reviewed by the program committee and accepted for presentations at the conference. All speakers

will be invited to submit a full paper, based on their SETA submission, to a special issue of the Springer

journal Cryptography and Communication: Discrete Structures, Boolean Functions and Sequences. These

papers will be refereed again to ensure that they meet the high standard of this journal. We hope the

conference and resulting discussion will inspire submissions to this special issue.

We would like to thank the invited speakers, all authors, the members of the program committee and

organization committee for their great contributions to the conference.

We wish you all a pleasant stay in Colchester and an inspiring conference.

Guang Gong, Tor Helleseth, Daniel Katz, Chunlei Li, and Zilong Liu
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– Ferruh Özbudak, Sabanci University, Turkey

– Alexander Pott, Otto-von-Guericke University Magdeburg, Germany

– Udaya Parampalli, University of Melbourne, Australia

– Constanza Riera, Western Norway University of Applied Sciences, Norway

– Sumanta Sarkar, University of Warwick, United Kingdom

– Hong-Yeop Song, Yonsei University, Korea

– Pante Stanica, Naval Postgraduate School, USA

– Arne Winterhof, Austrian Academy of Sciences, Austria

– Zhengchun Zhou, Southwest Jiaotong University, China

Organization Committee

– Wenqiang Yi, University of Essex, United Kingdom

– Dian Li, University of Bergen, Norway

– Palash Sarkar, University of Bergen, Norway



Table of Contents

Technical Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Keynote Talk 1 by Sihem Mesnager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

On algebraic problems on finite fields and their importance more than ever in the study of

S-boxes in block ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Session 1. Auto-correlation of Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Balanced binary sequences with favourable autocorrelation from cyclic relative difference sets . 12

Moments of autocorrelation demerit factors of binary sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Session 2. Cryptographic Functions and Algebric Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A direct method for calculating the differential spectrum of an APN power mapping . . . . . . . . . 35

Bounds for the average degree-k monomial density of Boolean functions . . . . . . . . . . . . . . . . . . . . 53

Optimal few-weight codes from projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Session 3. DeBrujin Sequences and Linear Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Filtering modified de bruijn sequences with designated linear complexity . . . . . . . . . . . . . . . . . . . . 76

New successor rules to efficiently produce exponentially many binary de Bruijn sequences . . . . 90

On the linear complexity of shrunken sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Keynote Talk 2 by Pingzhi Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Recent advances in signal design for integrated sensing & communications . . . . . . . . . . . . . . . . . . . 112

Session 4. Zero-Complementary Sequences and Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Construction of cross Z-complementary sequence set with large CZC ratio . . . . . . . . . . . . . . . . . . . 113

A construction of optimal Z-complementary code sets based on partially m-shift orthogonal

complementary codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Multiple spectrally null constrained complete complementary codes of various lengths over

small alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

New constructions of two-dimensional binary Z-complementary array pairs . . . . . . . . . . . . . . . . . 147

Keynote Talk 3 by Steven Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A survey of compositional inverses of permutation polynomials over finite fields . . . . . . . . . . . . . . 159

Session 5. Permutations over Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A proof of a conjecture on trivariate permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

On the bijectivity of the map χ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

An effective approach to enumerate universal cycles for k-permutations . . . . . . . . . . . . . . . . . . . . 179

Keynote Talk 4 by Christos Masouros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Sustainable and multifunctional wireless networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
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10:30-11:20 Pantelimon Stănică Threshold implementations and permutations’ abstract

decompositions: a number theoretical approach

11:20-12:10 Wai-Ho Mow Bus coding for low-power on-chip interconnects abstract

Poster Session

12:10-14:00 Lunch

14:00-15:00 Panel Discussion

Opportunities and Challenges for Next-Generation Sequences

Pingzhi Fan, Guang Gong, Tor Helleseth and Christos Masouros

15:00-15:30 Coffee & Tea Break

Session 6: Randomness of Sequences (Chair: Chaoyun Li)

15:30-15:55 Melis Aslan Observations on NIST SP 800-90B paper

entropy estimators

15:55-16:20 Michael Vielhaber Two pattern properties of binary sequences invariant paper

under the continued fraction operator K

(the Berlekamp-Massey Algorithm)
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Keynote Talk:

On algebraic problems on finite fields

and their importance more than ever in

the study of S-boxes in block ciphers

Sihem Mesnager

LAGA (Laboratory of Analysis, Geometry, and Applications), University of Paris

VIII, University Sorbonne Paris Nord, and CNRS, Paris, France

Abstract. Throughout this talk, we will place ourselves in finite fields

whose theory originates in the work of the French mathematician Evariste

Galois. After briefly presenting some main cryptographic problems in

symmetric cryptography in the context of block ciphers and highlighting

our main motivations, we focus on some underlying fundamental math-

ematical problems and discuss some algebraic approaches and ingredi-

ents used at the core of the methodologies. We shall also present recent

achievements in algebraic equations and address open questions, particu-

larly those aimed at implementing methods to solve equations over finite

fields and making them available to theorists, notably cryptographers

and sequences designers.



Balanced Binary Sequences with

Favourable Autocorrelation from

Cyclic Relative Difference Sets

Gangsan Kim Hong-Yeop Song
Department of Electrical and Electronic Engineering

Yonsei University
Seoul, South Korea

{gs.kim,hysong}@yonsei.ac.kr

Abstract

In this paper, we propose a balanced binary sequence of even period 2u for some
even values of u with 5-level autocorrelation from a cyclic relative difference set with
parameters (u, 2, u − 1, u2 − 1). We further identify its half-period as those having
an optimal odd autocorrelation. Various relations of these with some previous
constructions are discussed.

1 Introduction

Binary sequences with good autocorrelation properties are advantageous for synchroniza-
tion in various communication systems [6, 7]. There have been a lot of results on the
constructions of sequences (binary, almost binary, ternary, non-binary, polyphase, almost
polyphase, etc) for the last half century or more for improved performance of various com-
munications systems. Most of the sequences in this paper are over the binary alphabet
F2 = {0, 1} but the correlation is computed over C with the correspondence

x ∈ F2 = {0, 1} ↔ (−1)x ∈ C.

When we are given a binary sequence s = {s(i) ∈ F2|i = 0, 1, ..., L−1} of length L, we
may consider its (usual) periodic expansion for computing its periodic autocorrelation. In
that sense, we will use the term ‘length’ and ‘period’ of a binary sequence interchangeably.
Then, the periodic autocorrelation of s at shift τ , denoted by Cs(τ), is given by

Cs(τ) =
L−1∑

i=0

(−1)s(i)+s(i+τ), (1)

where i + τ is computed mod L. There is an alternative way of expanding the sequence
s of length L periodically. Let s′ be a complement of s defined by

s′(i) = s(i) + 1, i = 0, 1, ..., L− 1.
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Then, the alternative periodic expansion, called odd-periodic expansion, is to repeat s
in concatenation with s′ of total length 2L. The autocorrelation of s with this type of
expansion is called the odd autocorrelation of s. The odd autocorrelation at shift τ with
0 ≤ τ < L, denoted by Codd

s (τ), is given by

Codd
s (τ) =

L−τ−1∑

i=0

(−1)s(i)+s(i+τ) +
L−1∑

i=L−τ
(−1)s(i)+s(i+τ)+1, (2)

where i+ τ is computed mod L. In fact, Cs(τ) can be said to be an even autocorrelation.
The binary sequence s of even period L is said to have optimal autocorrelation [7, 9]

if

Cs(τ) =

{
0 or − 4 if L ≡ 0 (mod 4)
2 or − 2 if L ≡ 2 (mod 4).

for any τ ̸= 0. A lot of binary sequences of even period L above with (non-perfect) optimal
autocorrelation have been constructed [4,5,15,19,21,26], which would be best possible in
terms of its periodic autocorrelation, since the perfect binary sequence is known only for
L = 4 [7].

Instead of suppressing all the out-of-phase autocorrelation magnitudes, one started
to consider having all-zero out-of-phase autocorrelations except for one non-zero value at
some τ ̸= 0. It is called almost perfect sequences [24] and investigated immediately by
many others [10,16–18] and further generalized into some non-binary zero-correlation zone
sequences [20,22,23]. We would like to mention that [17,18] established some fundamental
relation between cyclic relative difference sets and almost perfect binary sequences, which
is very much similar to the relation between cyclic difference sets and binary sequences
with two-level autocorrelation. For example, binary NTU sequences [16] are closely related
with binary sequences from a cyclic relative difference set [10], which will be mentioned
at the very last Remark of this paper. In fact, the main result of this paper is a full
generalization of [10].

In search of sequences with better autocorrelation property, on the other hand, almost
binary sequences or ternary sequences have been studied a lot [12,13,17]. Here, an almost
binary sequence is a ternary sequence over {0,+1,−1} but the term 0 occurs only once or
a few times. Such sequences with ‘perfect’ autocorrelation have been found, for example,
in [13].

Some reviews on the binary and almost binary sequences with good odd autocorrela-
tion follows now. In [14], especially in Section IV. A. 4 there, a binary sequence of even
period is said to have an odd optimal autocorrelation if the magnitude of out of phase
odd autocorrelation is no larger than 2. The binary sequences with low or optimal odd
periodic autocorrelation have also been proposed a lot [12–14,16,25].

In this paper, we propose (Theorem 3) a balanced binary sequence of even length 2u
for some integer u with 5-level autocorrelation from a cyclic relative difference set. The
out-of-phase autocorrelation magnitudes are all zero except for three indices at which the
value is either 2u (τ = u, once) or 4 (at some τ ̸= 0, u twice). We observe the half
period of this sequence and found that it has optimal odd autocorrelation (Theorem 4).
Furthermore, we explain some of the known constructions for sequences with good (even

Sequences and Their Applications (SETA) 2024 2
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or odd) autocorrelation are closely related with two main results of this paper using an
relative difference set (RDS).

This paper is organized as follows, Section 2 introduces some preliminaries. Section
3 discusses two main results of this paper. Section 4 explains the relation between our
constructions and other known constructions, especially in [12, 16]. Section 5 concludes
this paper with a conjecture on the binary sequences of even period with optimal odd
autocorrelation.

2 Preliminaries

2.1 Notation

We will fix the following notation throughout the paper.

• Z is the set of integers and ZL is the integers mod L.

• C is the set of complex numbers and Fq is the finite field of size q.

• Given a binary sequence s = {s(i) ∈ F2|i = 0, 1, ..., L− 1} of length L, the periodic
autocorrelation of s at shift τ , denoted by Cs(τ), is given by (1) and the odd
autocorrelation Codd

s (τ) is given by (2), both in the beginning of Introduction.

• For a subset X of ZL and an element τ ∈ ZL, we define

∆X(τ) ≜ |(τ +X) ∩X| ,

where τ +X = {τ + x|x ∈ X}. Note that

∆X(τ) = ∆X(−τ)

for any subset X and any τ .

2.2 Relative Difference Set

Definition 1 (Relative Difference Sets [2, 8, 17]). Let u,v,k, λ be positive integers. A
(u, v, k, λ) relative difference set (RDS) D in the (additive) cyclic group Zuv relative to
its subgroup (u) = uZuv is a k-subset {d1, d2, . . . , dk} ⊂ Zuv, satisfying the following
condition:

∆D(d) =





λ, d ∈ Zuv\uZuv

k, d = 0
0, otherwise,

(3)

for any d ∈ Zuv. Throughout this paper, we call this a (u, v, k, λ) RDS without refering
to the cyclic group Zuv and its subgroup (u) = uZuv.

It is well-known that a (u, k, λ)-cyclic difference set (CDS) in Zu is a (u, v = 1, k, λ)-
RDS in Zu (relative to its trivial subgroup {0}). We are mostly interested in the case where

Sequences and Their Applications (SETA) 2024 3
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v = 2 [2] and k = u− 1 so that the parameters become (u, v = 2, k = u− 1, λ = u
2
− 1),

since the existence of a cyclic (u, v, k, λ)-RDS implies the relation

k(k − 1) = λv(u− 1).

This set of parameters further implies that u itself must be even. The following provides
an equal-size partition of Z2u so that a binary sequence can be constructed from such
RDS D.

Proposition 2. Let D be a (u, 2, u − 1, u
2
− 1)-RDS. Then, Z2u can be decomposed into

the following disjoint union:

Z2u = D ∪ (u+D) ∪ {z} ∪ {z + u},
for some z.

Proof. By (3), ∆D(u) = 0. Therefore,

D ∩ (u+D) = ∅.
Therefore,

|Z2u\(D ∪ (u+D))| = 2u− 2k = 2.

Therefore, Z2u\(D ∪ (u + D)) is non-empty. Let z be a member. If z + u ∈ D, then
z = z + u + u ∈ u + D. If z + u ∈ u + D, then z ∈ D. Therefore, we also have
z + u ∈ Z2u\(D ∪ (u+D)).

3 Binary Sequences with Favourable Autocorrelation from RDS

In this section, we propose a balanced binary sequence s = {s(i)|i ∈ Z2u} of length 2u
with 5-level autocorrelation from a (u, 2, u− 1, u

2
− 1)-RDS and discuss its two variations

with (somewhat) better correlation property: the first is its half period portion of length
u which is still balanced with 4-level optimal odd autocorrelation; the second is its one-
bit-changed version so that the result is almost balanced but with 3-level autocorrelation
so that it is almost perfect.

Theorem 3 (Main Construction). Let D be a (u, v = 2, k = u− 1, λ = u
2
− 1)-RDS. Let

z ∈ Z2u so that Z2u is partitioned as in Proposition 2:

Z2u = D ∪ (u+D) ∪ {z} ∪ {z + u}. (4)

Define a binary sequence s = {s(i) | i = 0, 1, ..., 2u− 1} as follows:

s(i) =

{
0, i ∈ D ∪ {z}
1, i ∈ (u+D) ∪ {u+ z}. (5)

Then, the periodic (even) autocorrelation of s becomes:

Cs(τ) =





2u, τ = 0
−2u, τ = u
4, τ,−τ ∈ −z + u+D
−4, τ,−τ ∈ −z +D
0, otherwise.

(6)
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Proof. From the relation (4) and definition of the sequence s in (5), the autocorrelation
of s at shift τ is calculated as follows:

Cs(τ) =
∑

i∈Z2u

(−1)s(i)+s(i+τ)

=
∑

i∈D
(−1)s(i)+s(i+τ) +

∑

i∈u+D

(−1)s(i)+s(i+τ) + (−1)s(z)+s(z+τ) + (−1)s(z+u)+s(z+u+τ).

(7)

The first sum in (7) can be split into the following three cases: (a) i ∈ D and i + τ ∈ D
so that s(i) + s(i + τ) = 0, (b) i ∈ D and i + τ ∈ u +D so that s(i) + s(i + τ) = 1 and
(c) i ∈ D and i+ τ ∈ {z, u+ z} so that s(i) + s(i+ τ) = s(i+ τ) which is 1 if i+ τ = z
and 0 if i+ τ = u+ z. Then the case (a) becomes

∑

i ∈ D
i + τ ∈ D

(+1) = |D ∩ (−τ +D)| = |τ +D ∩D| = ∆D(τ).

Similarly, the case (b) becomes

∑

i ∈ D
i + τ ∈ u + D

(−1) = −|D ∩ (−τ + u+D)| = −∆D(u− τ).

Similarly, the second sum can be split into the following three cases: (a) i ∈ u+D and
i+ τ ∈ D so that s(i) + s(i+ τ) = 1, (b) i ∈ u+D and i+ τ ∈ u+D s(i) + s(i+ τ) = 0,
and (b) i ∈ u+D and i+ τ ∈ {z, u+ z}. Then, similar to the first two cases of the first
sum, the cases (a) and (b) become:

∑

i ∈ u + D
i + τ ∈ D

(−1) = −|(u+D) ∩ (−τ +D)| = −∆D(u+ τ)

and ∑

i ∈ u + D
i + τ ∈ u + D

(+1) = |u+D ∩ (u− τ +D)| = ∆u+D(τ) = ∆D(τ).

Therefore, the autocorrelation of s at shift τ becomes:

Cs(τ) = 2∆D(τ)−∆D(u+ τ)−∆D(u− τ)
+

∑

i ∈ D ∪ (u + D)
i + τ = z, z + u

(−1)s(i)+s(i+τ) + (−1)s(z+τ) + (−1)s(z+u+τ)+1 (8)

For the cases of either τ = 0 or τ = u, recall that

(D ∪ (u+D)) ∩ {z, z + u} = ∅.
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Therefore, the middle sum in (8) vanishes in this case. When τ = 0, we have

Cs(0) = 2∆D(0) + 2(−1)0 = 2k + 2 = 2u,

which is the length of s. Similarly, when τ = u,

Cs(u) = −2∆D(0) + 2(−1)1 = −2k − 2 = −2u.

Now, consider the case when τ ̸= 0, u. Then, the first line of Cs(u) in (8) becomes

2∆D(τ)−∆D(u+ τ)−∆D(u− τ) = 0,

since ∆D(τ) = ∆D(u± τ) = λ = u
2
− 1. Now, the middle sum in (8) becomes the sum of

only two terms

∑

i ∈ D ∪ (u + D)
i + τ = z, z + u

(−1)s(i)+s(i+τ) = (−1)s(z−τ)+s(z) + (−1)s(z+u−τ)+s(z+u)

= (−1)s(z−τ) + (−1)s(z+u−τ)+1,

since, in this case,

{z − τ, z + u− τ} ⊂ (D ∪ (u+D)),

and hence, there are only two terms corresponding to i = z − τ and i = z + u − τ .
Therefore, (8) finally becomes

Cs(τ) = (−1)s(z−τ) + (−1)s(z+u−τ)+1 + (−1)s(z+τ) + (−1)s(z+u+τ)+1.

Therefore, finally, when τ ̸= 0, u,

Cs(τ) =




−4, z − τ, z + τ ∈ D
4, z − τ, z + τ ∈ u+D
0, otherwise.

This proves the theorem.

The binary sequence s = {s(i) | i = 0, 1, ..., 2u− 1} constructed from above theorem is
balanced since

|D ∪ {z}| = |(u+D) ∪ {u+ z}|.
Note that (u+D)∪{u+z} can be represented also as u+(D∪{z}). This explains its some
special periodic property. When it is (cyclically) shifted by half the period, then the result
is a complement of the original sequence. Therefore, its half period portion of length u
is expanded odd-periodically, the result is the same as the (even) periodic expansion of
the original sequence s of length 2u. The proof of the following is straightforward from
Theorem 3 and the discussions so far.
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Theorem 4. Let s be the binary sequence of period 2u constructed from Theorem 3 with
some (u, 2, u − 1, u

2
− 1)-RDS and an integer z satisfying the relation (4). Define the

binary sequence t of period u as follows, for i = 0, 1, ..., u− 1,

t(i) = s(i).

Then the odd autocorrelation of t at shift τ with 0 ≤ τ < u becomes:

Codd
t (τ) =





u, τ = 0
2, τ,−τ ∈ −z + u+D
−2, τ,−τ ∈ −z +D
0, otherwise.

Remark 5. The binary sequence t constructed from Theorem 4 is optimal in the sense
of minimizing the maximum magnitude of out of phase odd autocorrelation described in
Section IV. A. 4 of [14], as mentioned in Introduction.

4 The relation between our construction and other known con-
struction

In this section, we discuss the relation between our construction in Theorems 3 and 4 from
an RDS of parameters (u, 2, u− 1, u

2
− 1) and other previous constructions, for example,

those in [12, 16] which were given without mentioning any RDS structure. In fact, an
example of an RDS can be constructed by using some finite field structures [8], and the
construction of a binary sequence can be stated without mentioning any RDS structures
and by simply using a subset D of the integers mod uv. The sequences in [12, 14, 16] are
in fact constructed in this way without mentioning any RDS structures.

First, we will give a brief explanation of those from [12] and [14]. We use the following
additional notations in this section.

• q is an odd prime power.

• Fq2 is the finite field with q2 elements.

• α is a primitive element of Fq2 .

• β ≜ αq+1 is a primitive element of Fq.

• For any non-zero b ∈ Fq, we use, for 0 ≤ j < q − 1,

logβ(b) = j if and only if b = βj.

• Tr(a) ∈ Fq is the trace of a ∈ Fq2 defined by

Tr(a) = a+ aq.
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A construction of some binary sequences with optimal odd autocorrelation is given
in [14], where the binary sequence is obtained from a ternary {0,±1} odd perfect sequence
by replacing 0 with one of {+1,−1}. Here, an odd perfect sequence is defined as those
having all the out-of-phase odd autocorrelation values equal to zero. The resulting binary
sequence is not odd perfect, but has optimal odd autocorrelation as those from Theorem 4.
In fact, it is also given in [12] as follows:

Definition 6 (Modified Krengel Sequences [12,14]). The
binary sequence x = {x(i) | i = 0, 1, ..., q} of length (q + 1) is defined as

x(i) =

{
1, logβ(Tr(α

i)) is odd
0, Tr(αi) = 0 or else logβ(Tr(α

i)) is even.

We just note the values of i above so that x(i) = 0 except for the case Tr(αi) = 0. It
is not difficult to observe that the set of these values of i forms an RDS of parameters
(q + 1, 2, q, q−1

2
) [8] in the structure of Fq and its extension Fq2 . That is, claim that

D ≜ {i ∈ Z2(q+1) | logβ(Tr(αi)) is even}. (9)

is a (q + 1, 2, q, q−1
2
)-RDS in Z2(q+1) relative to its subgroup (q + 1)Z2(q+1). For the proof,

see Cor. 5.1.1 in [8] or Sec. 2.2 in [17].

Remark 7. The modified Krengel sequence x of length q + 1 is the same as those con-
structed from Theorem 4 with the RDS D in (9).

Nogami, Tada and Uehara [16] proposed some binary sequences as in the following
definition for some specific parameters.

Definition 8 (Binary NTU Sequences [16]). The binary sequence y = {y(i) | i = 0, 1, ..., 2(q+
1)− 1} of length 2(q + 1) is defined in [16] as

y(i) =

{
1, logβ(Tr(α

i)) is odd
0, Tr(αi) = 0 or else logβ(Tr(α

i)) is even.

We call this sequence the binary NTU sequence.

It is interesting that the only difference between this sequence and the modified Krengel
sequence is the range of i which defines the sequence. It can be also seen that only one
term is changed from the construction in Theorem 3 at index u + z so that the result is
no longer balanced (we may call this almost balanced) but with better autocorrelation
property which is only 3-level. In fact, this binary sequence has been defined to be the
almost perfect sequences [18,24] and Pott and Bradley proved [18] that they are equivalent
to some (u, 2, u− 1, λ)-RDS in Z2u relative to its subgroup uZ2u.

Remark 9. These are all equivalent to an almost perfect binary sequence of period 2(q+1):

1. A cyclic relative difference set with parameter (q + 1, 2, q, (q − 1)/2) in Z2u relative
to its subgroup uZ2u.

2. Binary NTU sequence of length 2(q + 1).

3. Modified binary sequence of length 2u obtained by chaning one term at index z+ u
from those constructed in Theorem 3 with u = q + 1.
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5 Concluding Remarks

We propose a construction of a balanced binary sequence of even period with 5-level
autocorrelation in Theorem 3 from an RDS of parameters (u, 2, u − 1, u

2
− 1), which is

slightly different from the almost perfect binary sequences from this RDS as mentioned
in Remark 9. We further identify its half-period in Theorem 4 as those having optimal
odd autocorrelation. All of the sequences of our constructions are derived from any
(u, v = 2, k = u− 1, λ = u

2
− 1)-RDS when u = q + 1 for an odd prime power q [8, 17].

We find out that the binary sequence of period with optimal odd autocorrelation
derived from [12, 14] can be constructed from Theorem 4 with the (u = q + 1, 2, q, q−1

2
)-

RDS constructed from [8,17].

All the known parameters of a (u, v = 2, k = u− 1, λ)-RDS are (u = q + 1, v = 2, k =
q, λ = q−1

2
) for some odd prime power q. There exist several non-equivalence classes

of (u = q + 1, v = 2, k = q, λ = q−1
2
)-RDS [1, 3, 11, 17]. Indeed, our construction in

Theorem 4 give some binary sequences of period q + 1 with optimal odd autocorrelation.
We conjecture that it is the only way of getting a binary sequence of period q + 1 with
optimal odd autocorrelation for some odd prime power q.
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Abstract

Sequences with low aperiodic autocorrelation are used in communications and
remote sensing for synchronization and ranging. The autocorrelation demerit factor
of a sequence is the sum of the squared magnitudes of its autocorrelation values at
every nonzero shift when we normalize the sequence to have unit Euclidean length.
The merit factor, introduced by Golay, is the reciprocal of the demerit factor. We
consider the uniform probability measure on the 2ℓ binary sequences of length ℓ and
investigate the distribution of the demerit factors of these sequences. Sarwate and
Jedwab have respectively calculated the mean and variance of this distribution. We
develop new combinatorial techniques to calculate the pth central moment of the
demerit factor for binary sequences of length ℓ. These techniques prove that for
p ≥ 2 and ℓ ≥ 4, all the central moments are strictly positive. For any given p,
one may use the technique to obtain an exact formula for the pth central moment
of the demerit factor as a function of the length ℓ. Jedwab’s formula for variance
is confirmed by our technique with a short calculation, and we go beyond previous
results by also deriving an exact formula for the skewness. A computer-assisted
application of our method also obtains exact formulas for the kurtosis, which we
report here, as well as the fifth central moment.

1 Introduction

A sequence is a doubly infinite list f = (. . . , f−1, f0, f1, f2, . . .) of complex numbers in
which only finitely many of the terms are nonzero. We adopt this definition because
we are thinking of our sequences aperiodically. If ℓ is a nonnegative integer, then a

∗This paper is based upon work of both authors supported in part by the National Science Foundation
under Grants 1500856 and 1815487, and by work of Daniel J. Katz supported in part by the National
Science Foundation under Grant 2206454.
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binary sequence of length ℓ is an f = (. . . , f−1, f0, f1, f2, . . .) in which fj ∈ {−1, 1} for
j ∈ {0, 1, . . . , ℓ− 1} and fj = 0 otherwise. Binary sequences are used to modulate signals
in telecommunications and remote sensing [7, 8, 13]. Some applications, such as ranging,
require very accurate timing. For these applications, it is important that the sequence
not resemble any time-delayed version of itself.

Our measure of resemblance is aperiodic autocorrelation. If f is a sequence and s ∈ Z,
then the aperiodic autocorrelation of f at shift s is

Cf (s) =
∑

j∈Z
fj+sfj.

Since fk = 0 for all but finitely many k, this sum is always defined and is nonzero for only
finitely many s. Note that Cf (0) is the squared Euclidean norm of f . For applications,
we want |Cf (s)| to be small compared to Cf (0) for every nonzero s ∈ Z; this distinction
is what ensures proper timing.

There are two main measures for evaluating how low the autocorrelation of a sequence
f is at nonzero shifts. One measure is the peak sidelobe level, which is the maximum of
|Cf (s)| over all nonzero s ∈ Z; this can be regarded as an l∞ measure. Another important
measure is the demerit factor, which is an l2 measure of smallness of autocorrelation. The
(autocorrelation) demerit factor of a nonzero sequence f is

ADF(f) =

∑
s∈Z
s ̸=0
|Cf (s)|2

Cf (0)2
= −1 +

∑
s∈Z |Cf (s)|2
Cf (0)2

, (1)

which is the sum of the squared magnitudes of all autocorrelation values at nonzero shifts
for the sequence that one obtains from f by normalizing it to have unit Euclidean norm.
The (autocorrelation) merit factor is the reciprocal of the autocorrelation demerit factor;
it was introduced by Golay in [5, p. 450] as the “factor” for a sequence and then as the
“merit factor” in [6, p. 460], while “demerit factor” appears later in the work of Sarwate
[12, p. 102].

Sequences with low demerit factor (equivalently, high merit factor) are highly desirable
for communications and ranging applications. For each given length ℓ, we would like to
understand the distribution of the demerit factors of binary sequences of length ℓ, which
always have Cf (0) = ℓ, so the denominator of the last fraction in (1) is always ℓ2. Thus,
it is often convenient to study the numerator of the last fraction in (1), which is the sum
of the squares of all the autocorrelation values, so we define

SSAC(f) =
∑

s∈Z
|Cf (s)|2,

so that for a binary sequence of length ℓ we have

ADF(f) = −1 + SSAC(f)

ℓ2
. (2)

For this entire paper, Seq(ℓ) denotes the set of 2ℓ binary sequences of length ℓ with
the uniform probability distribution, and the expected value of a random variable v with
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respect to this distribution is denoted by Eℓ
fv(f) = Ef∈Seq(ℓ)(v(f)). The pth central

moment of the random variable v(f) as f ranges over the binary sequences of length ℓ is
denoted

µℓ
p,fv(f) = Eℓ

f

(
v(f)− Eℓ

fv(f)
)p
, (3)

and the pth standardized moment is denoted by

µ̃ℓ
p,fv(f) =

µℓ
p,fv(f)(

µℓ
2,fv(f)

)p/2 .

Sarwate [12, eq. (13)] found the mean of the demerit factor for binary sequences of a given
length.

Theorem 1 (Sarwate, 1984). If ℓ is a positive integer, then Eℓ
f ADF(f) = 1− 1/ℓ.

Borwein and Lockhart [3, pp. 1469–1470] showed that the variance of the demerit factor
for binary sequences of length ℓ tends to 0 as ℓ tends to infinity. Jedwab [9, Theorem
1] gives an exact formula for the variance of the demerit factor for binary sequences of
length ℓ. We present a formula involving a quasi-polynomial divided by the fourth power
of the length that is equivalent to Jedwab’s formula for the variance.

Theorem 2 (Jedwab, 2019). If ℓ is a positive integer, then

µℓ
2,f ADF(f) =

{
16ℓ3−60ℓ2+56ℓ

3ℓ4
if ℓ is even,

16ℓ3−60ℓ2+56ℓ−12
3ℓ4

if ℓ is odd.

When one compares the calculation of the variance by Jedwab with that of the mean
by Sarwate, one finds the first instance of a general principle: for each p, the determina-
tion of the (p + 1)th moment is always considerably more difficult than that of the pth
moment. Jedwab follows the method of Aupetit et al. [1], which involves many multi-
ple summations and is therefore somewhat difficult to execute precisely: Jedwab had to
correct the calculation of Aupetit et al. to get the right formula.

In this paper, we devise a new combinatorial method for calculating the moments of
the distribution of the demerit factor of binary sequences of length ℓ. For any given p,
one may use the technique to obtain an exact formula for the pth central moment of the
demerit factor as a function of the length ℓ. For p = 2, this entails a short calculation
that yields Jedwab’s formula for variance. To demonstrate that one can go further, we
also use our formula for p = 3 to derive an exact formula for the third central moment
of SSAC(f) as a quasi-polynomial function of sequence length, from which we determine
the third central moment and third standardized moment (skewness) of ADF(f).

Theorem 3. If ℓ is a positive integer, then

µℓ
3,f ADF(f) =





160ℓ4−1296ℓ3+3296ℓ2−2496ℓ
ℓ6

if ℓ ≡ 0 mod 4,

160ℓ4−1296ℓ3+3296ℓ2−2736ℓ+576
ℓ6

if ℓ ≡ ±1 mod 4,

160ℓ4−1296ℓ3+3296ℓ2−2496ℓ−384
ℓ6

if ℓ ≡ 2 mod 4,
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and

µ̃ℓ
3,f ADF(f) =





6
√
3(10ℓ4−81ℓ3+206ℓ2−156ℓ)

(4ℓ3−15ℓ2+14ℓ)3/2
if ℓ ≡ 0 mod 4,

6
√
3(10ℓ4−81ℓ3+206ℓ2−171ℓ+36)

(4ℓ3−15ℓ2+14ℓ−3)3/2 if ℓ ≡ ±1 mod 4,

6
√
3(10ℓ4−81ℓ3+206ℓ2−156ℓ−24)

(4ℓ3−15ℓ2+14ℓ)3/2
if ℓ ≡ 2 mod 4.

We also report in Theorem 20 a computer-assisted determination of the fourth central
moment of SSAC(f) as a quasi-polynomial function of sequence length, from which we
obtain the fourth central moment and fourth standardized moment (kurtosis) of ADF(f)
(see Corollaries 21 and 22).

Theorem 4. If ℓ is a positive integer, then µℓ
4,f ADF(f) is a quasi-polynomial function of

ℓ of degree 6 and period 120 divided by the polynomial ℓ8 (see Corollary 21 for the precise
function), while µ̃ℓ

4,f ADF(f) is a quasi-polynomial function of ℓ of degree 6 and period
120 divided by a quasi-polynomial function of ℓ of degree 6 and period 2 (see Corollary 22
for the precise function).

Our computer program was also able to find the fifth central moment of ADF as a
quasi-polynomial function of ℓ of degree 7 and period 55440 divided by the polynomial ℓ10.
Our methods also shed light on interesting aspects of the distribution of demerit factors.
For instance, we show that our general theory implies that the odd central moments are
always nonnegative, and we can also determine precisely when central moments are zero.

Theorem 5. Let ℓ and p be positive integers. Then µℓ
p,f ADF(f) is nonnegative. More-

over, if (i) p = 1, (ii) p is odd with p > 1 and ℓ ≤ 3, or (iii) p is even and ℓ ≤ 2, then
µℓ
p,f ADF(f) is zero; otherwise it is strictly positive.

Our method can be developed further to prove that the pth central moment of SSAC for
sequences of length ℓ is always a quasi-polynomial function of ℓ with rational coefficients.
Further developments of our method also show that in the limit as ℓ → ∞, all the
standardized moments of the autocorrelation demerit factor tend to those of the standard
normal distribution. The additional theoretical tools used to obtain these results are
introduced and explored in [10].

The rest of this paper is organized as follows. Section 2 has preliminary conventions
and definitions. Section 3 exhibits an exact formula for the central moments of SSAC
(cf. Proposition 11). Section 4 describes a group action that yields an easier formula
(cf. Proposition 17), and Section 5 discusses an algorithm to assist in the use of this
formula. Section 6 discusses the proof of Theorem 5. Section 7 is a brief exposition
about how we apply our theory to compute the variance, thus confirming Jedwab’s result
in Theorem 2. Section 8 follows with a discussion of the exact calculation of skewness
reported in Theorem 3. Section 9 then reports on our computer-assisted determination
of the kurtosis in reported in Theorem 4.
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2 Notation and definitions

In this section, we give the basic conventions, notations, and definitions, mostly concerning
particular kinds of partitions and functions, which are used in Section 3 to obtain an exact
formula for the central moments (cf. Proposition 11).

We use the convention that N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}. If ℓ ∈ N, we write
[ℓ] to mean {0, 1, . . . , ℓ− 1}. If S and T are sets, then T S denotes the set of all functions
from S into T .

A partition of a set A is a collection of nonempty, disjoint subsets of A whose union
is A. If P is a partition of A, then P induces an equivalence relation on A that is written
a1 ≡ a2 (mod P), which means that there is some class P ∈ P such that a1, a2 ∈ P .

Our calculation of the pth central moment of the demerit factor of binary sequences
of a given length depends on partitions of [p]× [2]× [2].

Definition 6 (Part(p)). If p is a nonnegative integer, Part(p) is the set of all partitions
of [p]× [2]× [2].

To influence the calculation, a partition must have certain properties. We define the
first of these.

Definition 7 (Globally even, locally odd (GELO) partition). Let p ∈ N. Then P ∈
Part(p) is said to be globally even, locally odd (abbreviated GELO) if |P | is even for every
P ∈ P and for every e ∈ [p] there is some Q ∈ P such that |({e} × [2]× [2]) ∩Q| is odd.

A certain kind of function, which we shall call an assignment, plays a critical role in
our probability calculations.

Definition 8 (Assignment). Let p ∈ N. An assignment for [p] is a function from
[p]× [2]× [2] into N, i.e., an element of N[p]×[2]×[2]. The following are notations for the set
of all assignments for [p] and some of its important subsets:

• As([p]) = N[p]×[2]×[2], the set of all assignments for [p],

• As([p], ℓ) = {τ ∈ As([p]) : τ([p]× [2]× [2]) ⊆ [ℓ]},

• As([p],=) = {τ ∈ As([p]) : τ(e, 0, 0) + τ(e, 0, 1) = τ(e, 1, 0) + τ(e, 1, 1) for every e ∈
[p]}, and

• As([p],=, ℓ) = As([p],=) ∩ As([p], ℓ).

Furthermore, if P ∈ Part(p), then

• As(P) = {τ ∈ As([p]) : τ(β) = τ(γ) iff β ≡ γ mod P},

• As(P , ℓ) = As(P) ∩ As([p], ℓ),

• As(P ,=) = As(P) ∩ As([p],=), and

• As(P ,=, ℓ) = As(P) ∩ As([p],=) ∩ As([p], ℓ).
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We now define another kind of partition that is significant in our calculation of mo-
ments.

Definition 9 (Satisfiable partition). Let p ∈ N. A partition P of [p]× [2]× [2] is said
to be satisfiable if As(P ,=) is nonempty. (Equivalently, there is some ℓ ∈ N such that
As(P ,=, ℓ) is nonempty.) We denote the set of satisfiable partitions of [p]× [2]× [2] as
Sat(p).

When we calculate the moments of the distribution of demerit factors, it turns out
that every nonzero term in our calculation corresponds to some partition combining the
attributes of both Definitions 7 and 9, so we name such partitions accordingly.

Definition 10 (Contributory partition). Let p ∈ N. Then a partition P of [p]× [2]× [2] is
said to be contributory if it is globally even, locally odd and satisfiable. We denote the set
of contributory partitions of [p]× [2]× [2] as Con(p). That is, Con(p) = GELO(p)∩Sat(p).

3 Moments from partitions

In this section, we exhibit an exact formula for central moments of SSAC(f), the sum
of the squares of the autocorrelation values for a sequence f , where the moments are
computed with f ranging over the set Seq(ℓ) of all binary sequences of a given length ℓ
(equipped with uniform probability measure). Recall from the Introduction that we use
Eℓ

fv(f) = Ef∈Seq(ℓ)(v(f)) to denote the expected value of a random variable v depending
on f as f ranges over Seq(ℓ). Also, recall from (3) that the pth central moment of the
random variable v(f) as f ranges over Seq(ℓ) is denoted

µℓ
p,fv(f) = Eℓ

f

(
v(f)− Eℓ

fv(f)
)p
.

Since (2) shows that the demerit factor of a binary sequence f of length ℓ is ADF(f) =
−1 + SSAC(f)/ℓ2, it is easy to determine the pth central moment of the demerit factor
from that of SSAC. Proposition 11 provides a way of calculating central moments of the
sum of squares of the autocorrelation in terms of contributory partitions and assignments.

Proposition 11. For p, ℓ ∈ N, we have

µℓ
p,f SSAC(f) =

∑

P∈Con(p)

|As(P ,=, ℓ)|.

The proof of this proposition is too long to include here, but it is a combinatorial proof
involving a binomial-type expansion of a product of multiple summations. See [11, Sec.
3] for details.

4 Moments from isomorphism classes of partitions

In this section, we exhibit a new formula (in Proposition 17 below) that makes the moment
calculations much easier than those performed using Proposition 11. The exact formula
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for central moments in Proposition 11 typically involves many similar partitions P that
produce the same value for |As(P ,=, ℓ)|, so we devise an equivalence relation (via a group
action) to organize these partitions into classes.

We first describe the group in our action. If p ∈ N, then we use Sp to denote the
group of all permutations of [p]. The group in our action is the following wreath product
of wreath products: W(p) = (S2Wr[2] S2)Wr[p] Sp. Each element π ∈ W(p) permutes
[p]× [2]× [2] in a certain way; see [11, Notation 4.1] for details. If π ∈ W(p) and P ⊆
[p]× [2]× [2] and Q is a set of subsets of [p]× [2]× [2], then we let π act on P by setting
π(P ) = {π(e, s, v) : (e, s, v) ∈ P} and we let π act on Q by setting π(Q) = {π(Q) : Q ∈
Q}. This gives an action of π on Part(p). If τ is an assignment from As([p]), we define
π∗(τ) = τ ◦ π, so that W(p) acts on As([p]) by τ 7→ π∗(τ). Then we have the following
result concerning the assignment counts of interest in Proposition 11.

Lemma 12. Let p, ℓ ∈ N and suppose that π ∈ W(p) and P ∈ Part(p). Then we have
π∗(As(π(P),=, ℓ)) = As(P ,=, ℓ).

This shows that partitions within the same orbit of the action of our groupW(p) make
the same contribution to the summation in Proposition 11.

Definition 13 (Isomorphic partitions, isomorphism class). Let p ∈ N and P ,Q ∈ Part(p).
Then we say that P and Q are isomorphic and write P ∼= Q to mean that there exists
π ∈ W(p) such that Q = π(P). The isomorphism class of P is the set of all partitions
that are isomorphic to P .

Since W(p) is a group, the isomorphism relation is clearly an equivalence relation. It
turns out that all partitions isomorphic to a contributory partition are also contributory.

Lemma 14. Let p, ℓ ∈ N. If P ,Q ∈ Part(p) with P ∼= Q, then P ∈ Con(p) if and only if
Q ∈ Con(p), and furthermore |As(P ,=, ℓ)| = |As(Q,=, ℓ)|.

This last result shows that each orbit in Part(p) under the action of W(p) either
contains only contributory partitions or no contributory partitions at all. Since we are
primarily interested in the contributory partitions and their equivalence classes, we make
a name for the set of all such classes.

Definition 15 (Isom(p)). Let p ∈ N. We use Isom(p) to denote the set of isomorphism
classes of partitions in Con(p).

In view of Lemma 14, it is helpful to have a notation for the common value of |As(P ,=
, ℓ)| for all partitions P in an isomorphism class of contributory partitions.

Definition 16 (Sols(P, ℓ)). Let p, ℓ ∈ N. If P is any subset of Part(p) such that all
partitions in P are isomorphic to each other, we let Sols(P, ℓ) be the common value (by
Lemma 14) of |As(P ,=, ℓ)| for P ∈ P.

We most commonly use this definition when P ∈ Isom(p). Now our formula in Propo-
sition 11 for central moments of the sum of squares of autocorrelation can be made much
less unwieldy by grouping terms according to isomorphisms classes.
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Proposition 17. If p, ℓ ∈ N, then

µℓ
p,f SSAC(f) =

∑

P∈Isom(p)

|P| Sols(P, ℓ).

5 Finding contributory partitions

In order to use Proposition 17 to compute the pth central moment of SSAC, we need
to find all the isomorphism classes of contributory partitions of [p]× [2]× [2]. It turns
out that a matrix algorithm can be devised to make this search straightforward. This is
described in detail in [11, Procedure 5.13].

6 Positivity of moments

Proposition 11 gives the pth central moment of SSAC as a sum of cardinalities, which
means that all the central moments are nonnegative. In fact, the pth central moment for
p ≥ 2 is strictly positive for almost all lengths of binary sequences, with the exceptions
noted in Theorem 5 of the Introduction. The proof of this amounts to showing that
there does exist at least one partition P ∈ Con(p) for all p ≥ 2 and that the number
|As(P ,=, ℓ)| of associated assignments is strictly positive for ℓ sufficiently large. See [11,
Section 6] for details.

7 Explicit calculation of variance

The calculation of the variance of SSAC (and then of ADF) is detailed in [11, Section
7]. Since we use Proposition 17, the first challenge is finding all the isomorphism classes
contributory partitions. We present the results of the search here; see [11, Example 5.14]
for details.

Lemma 18. There are precisely two equivalence classes, C1 and C2, in Isom(2), which
are represented respectively by partitions

P1 =
{
{(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)}, {(0, 1, 0), (1, 1, 0)}, {(0, 1, 1), (1, 1, 1)}

}
and

P2 =
{
{(0, 0, 0), (1, 0, 0)}, {(0, 0, 1), (1, 0, 1)}, {(0, 1, 0), (1, 1, 0)}, {(0, 1, 1), (1, 1, 1)}

}
.

To apply Proposition 17, we now need to find |P| and Sols(P) for each isomorphism
class P. We compute these in [11, Example 4.6 and Lemma 7.1] to obtain the variance
of SSAC, and then use (2) to obtain the variance of ADF, which is reported Theorem 2
of the Introduction.
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8 Explicit calculation of skewness

The calculation of the skewness of SSAC (and then of ADF) is detailed in [11, Section
8]. Since we use Proposition 17, the first challenge is finding all the isomorphism classes
contributory partitions. We present the results of the search here; see [11, Lemma 8.1]
for details.

Lemma 19. There are precisely eight equivalence classes, C1, . . . ,C8, in Isom(3), which
are represented respectively by partitions

P1 =
{{

(0, 0, 0), (0, 0, 1), (1, 1, 0), (2, 0, 0)
}
,
{
(1, 0, 0), (1, 0, 1), (0, 1, 0), (2, 0, 1)

}
,

{
(0, 1, 1), (2, 1, 0)

}
,
{
(1, 1, 1), (2, 1, 1)

}}
;

P2 =
{{

(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)
}
,
{
(0, 1, 0), (2, 0, 0)

}
,

{
(0, 1, 1), (2, 0, 1)

}
,
{
(1, 1, 0), (2, 1, 0)

}
,
{
(1, 1, 1), (2, 1, 1)

}}
;

P3 =
{{

(0, 0, 0), (0, 0, 1), (1, 1, 0), (2, 1, 0)
}
,
{
(1, 0, 0), (1, 0, 1)

}
,

{
(2, 0, 0), (2, 0, 1)

}
,
{
(0, 1, 0), (1, 1, 1)

}
,
{
(0, 1, 1), (2, 1, 1)

}}
;

P4 =
{{

(0, 0, 0), (0, 0, 1), (1, 0, 0), (2, 0, 0)
}
,
{
(0, 1, 0), (1, 1, 0)

}
,

{
(0, 1, 1), (2, 1, 0)

}
,
{
(1, 0, 1), (2, 1, 1)

}
,
{
(1, 1, 1), (2, 0, 1)

}}
;

P5 =
{{

(0, 0, 0), (0, 0, 1)
}
,
{
(1, 0, 0), (1, 0, 1)

}
,
{
(2, 0, 0), (2, 0, 1)

}
,

{
(1, 1, 0), (2, 1, 1)

}
,
{
(2, 1, 0), (0, 1, 1)

}
,
{
(0, 1, 0), (1, 1, 1)

}}
;

P6 =
{{

(0, 0, 0), (0, 0, 1)
}
,
{
(1, 0, 0), (1, 0, 1)

}
,
{
(0, 1, 0), (2, 0, 0)

}
,

{
(0, 1, 1), (2, 1, 0)

}
,
{
(1, 1, 0), (2, 0, 1)

}
,
{
(1, 1, 1), (2, 1, 1)

}}
;

P7 =
{{

(0, 0, 0), (1, 1, 0)
}
,
{
(0, 0, 1), (1, 1, 1)

}
,
{
(1, 0, 0), (2, 1, 0)

}
,

{
(1, 0, 1), (2, 1, 1)

}
,
{
(2, 0, 0), (0, 1, 0)

}
,
{
(2, 0, 1), (0, 1, 1)

}}
; and

P8 =
{{

(0, 0, 0), (1, 1, 1)
}
,
{
(0, 1, 0), (1, 0, 1)

}
,
{
(1, 0, 0), (2, 1, 1)

}
,

{
(1, 1, 0), (2, 0, 1)

}
,
{
(2, 0, 0), (0, 1, 1)

}
,
{
(2, 1, 0), (0, 0, 1)

}}
.

To apply Proposition 17, we now need to find |P| and Sols(P) for each isomorphism
class P. We compute these in [11, Lemmas 8.2–8.3] to obtain the third central moment
of SSAC, and then use (2) to obtain the third central moment of ADF, which is reported
Theorem 3 of the Introduction. Dividing the third central moment of ADF by the 3/2
power of the variance produces the skewness, which is also reported in Theorem 3 of the
Introduction.
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9 Computer-assisted calculation of kurtosis and fifth moment

A computer program was used to find the fourth central moment of SSAC. The pro-
gram first finds representatives for each isomorphism class C in Isom(4). This is done
by the matrix algorithm alluded to in Section 5, and the program finds 97 isomorphism
classes. For each class C in Isom(4), the program determines |C| using an orbit-stabilizer
technique and determines Sols(C, ℓ) using Ehrhart theory and inclusion-exclusion, since
finding Sols(C, ℓ) requires one to count the number of integer solutions of a homogeneous
linear system that lie in a hypercube as a function of the size of the hypercube (see [2, Ch.
3]) and to then deduct the number of solutions whose coordinates do not have distinct
values. The program uses these calculations to compute the sum in Proposition 17 with
p = 4, and thereby determines the fourth central moment of SSAC. The result is given
below as Theorem 20. The program was written in C++ and employing the GNU Mul-
tiple Precision Arithmetic Library (GMP) [4], and obtained the fourth central moment
of SSAC in about 5 seconds on a personal computer. The same program also obtained
the second a third moments of SSAC, and its results agree with our hand calculations in
Sections 7 and 8. With a few hours of computation time, the program was also able to
find that Isom(5) has 2581 isomorphism classes and then to compute an exact formula for
the fifth central moment of SSAC as a quasi-polynomial of degree 7 and period 55440.

Theorem 20. For ℓ ∈ N, the quantity µℓ
4,f SSAC(f) is a quasi-polynomial function of ℓ

of degree 6 and period 120 given by

µℓ
4,f SSAC(f) =

1

45

6∑

j=0

aj(ℓ)ℓ
j,

where for every ℓ we have a6(ℓ) = 3840; a5(ℓ) = 501120; a4(ℓ) = −6786480;

a3(ℓ) =

{
27078080 if ℓ ≡ 0 (mod 2),

27072320 if ℓ ≡ 1 (mod 2);

a2(ℓ) =

{
-17638464 if ℓ ≡ 0 (mod 2),

-18213024 if ℓ ≡ 1 (mod 2);

a1(ℓ) =





-69561600 if ℓ ≡ 0 (mod 12),

-71342400 if ℓ ≡ ±1,±5 (mod 12),

-75982080 if ℓ ≡ ±2 (mod 12),

-68516160 if ℓ ≡ ±3 (mod 12),

-72387840 if ℓ ≡ ±4 (mod 12),

-73155840 if ℓ ≡ 6 (mod 12);

and a0(ℓ) is a function of period 120 whose values are given on Table 1.

Since ADF(f) = −1+SSAC(f)/ℓ2, we can divide this result by ℓ8 to obtain the fourth
central moment of the demerit factor.
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Table 1: Values of a0(ℓ) as a function of ℓ (mod 120)
ℓ (mod 120) a0(ℓ) ℓ (mod 120) a0(ℓ) ℓ (mod 120) a0(ℓ)
0 0 21, 69 53732304 51, 99 57464784
1, 49 68764624 22, 58, 82, 118 100980736 53, 77 76964816
2, 38, 62, 98 98195456 23, 47 79591376 55 60110800
3, 27 63657936 24, 96 12386304 56, 104 43065344
4, 76 48062464 25 56378320 60 2211840
5 58385360 28, 52 54255616 61, 109 69870544
6, 54, 66, 114 61323264 29, 101 70771664 63, 87 62552016
7, 103 78690256 30, 90 48936960 65 57279440
8, 32 49258496 31, 79 72497104 68, 92 51470336
9, 81 52626384 33, 57 58819536 71, 119 73398224
10, 70 82401280 34, 46, 94, 106 94787584 73, 97 74957776
11, 59 74504144 35 62117840 75 45078480
12, 108 20791296 36, 84 14598144 80 30679040
13, 37 76063696 39, 111 56358864 83, 107 80697296
14, 26, 74, 86 92002304 40 33464320 85 57484240
15 43972560 41, 89 69665744 88, 112 52043776
16, 64 45850624 43, 67 79796176 93, 117 59925456
17, 113 75858896 44, 116 45277184 95 61011920
18, 42, 78, 102 67516416 45 41346000 100 35676160
19, 91 73603024 48, 72 18579456 105 40240080
20 32890880 50, 110 79616000 115 61216720

Corollary 21. If ℓ ∈ Z+, then

µℓ
4,f ADF(f) =

µℓ
4,f SSAC(f)

ℓ8
,

where µℓ
4,f SSAC(f) is the quasi-polynomial function of degree 6 and period 120 described

in Theorem 20.

We can normalize the fourth central moment using the variance from Theorem 2 to
obtain the kurtosis of SSAC(f), which is the same as the kurtosis of ADF(f) = −1 +
SSAC(f)/ℓ2.

Corollary 22. If ℓ ∈ Z+, then

µ̃ℓ
4,f ADF(f) = µ̃ℓ

4,f SSAC(f) =
µℓ
4,f SSAC(f)(

µℓ
2,f SSAC(f)

)2 ,

where µℓ
4,f SSAC(f) is the quasi-polynomial function of degree 6 and period 120 described

in Theorem 20 and µℓ
2,f SSAC(f) is the quasi-polynomial function of degree 3 and period

2 described in Theorem 2.
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A Direct Method for Calculating the Differential

Spectrum of an APN Power Mapping

Yongbo Xia∗, Furong Bao∗, Shaoping Chen†, and Tor Helleseth ‡

Abstract

Let n be a positive integer, p be an odd prime, d = pn+1
4 + pn−1

2 if pn ≡ 3 (mod 8)

and d = pn+1
4 if pn ≡ 7 (mod 8). When pn > 7, the power mapping xd from Fpn

to Fpn was proved to be almost perfect nonlinear by Helleseth, Rong and Sandberg
in IEEE Trans. Inform. Theory, 45(2): 475-485, 1999. By establishing a system
of linear equations related to the differential spectrum, Tan and Yan completely
determined the differential spectrum of this power mapping in Des. Codes Cryp-
togr., 91(8): 2755-2768, 2023. In this paper, we directly characterize the conditions
on b ∈ Fpn under which the differential equation (x + 1)d − xd = b has exactly i
solution(s) for i = 0, 1, 2, respectively. Then, using the theory of elliptic curves, the
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1 Introduction

Let Fpn be the finite field with pn elements and F∗pn = Fpn \{0}, where p is a prime integer
and n is a positive integer. Let F (x) be a mapping from Fpn to itself. The derivative
function of F (x) at an element a ∈ Fpn , denoted by DaF , is given by

DaF (x) = F (x+ a)− F (x).
For any a, b ∈ Fpn , the equation DaF (x) = b is called the differential equation of F (x)
with input difference a and output difference b. Let δF (a, b) = |{x ∈ Fpn | DaF (x) = b}|,
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where |S| denotes the cardinality of the set S. The differential distribution table (DDT)
of F (x) is the two-dimensional table defined by

(δF (a, b))a∈Fpn , b∈Fpn
.

The differential uniformity of F (x) is defined as

δ(F ) = max{δF (a, b) | a ∈ F∗pn , b ∈ Fpn}.

The function F (x) is said to be differentially δ-uniform if δ(F ) = δ. In particular, F (x)
is called a perfect nonlinear (PN) function if δ(F ) = 1, and an almost perfect nonlinear
(APN) function if δ(F ) = 2.

Differential uniformity is an important concept in cryptography introduced by Nyberg
[8], which can be used to quantify the security of the block cipher with respect to the
differential attack if F (x) used in the S-box. The lower the differential uniformity of F (x)
is, the stronger it is to resist the differential attack. Power functions with low differential
uniformity have been extensively studied due to their strong resistance to differential
attacks and low implementation cost.

For a power mapping F (x) = xd, it is readily seen that δF (a, b) = δF (1, b/a
d) for all

a ∈ F∗pn and b ∈ Fpn . The differential spectrum of F (x) = xd is defined as [ω0, ω1, ..., ωδ]
with

ωi = |{b | δF (1, b) = i, b ∈ Fpn}|.
Compared to the differential uniformity, the differential spectrum of a power mapping
reflects more information about its differential property [1, 2, 3, 4]. The whole differential
spectrum and even the form of the DDT play important roles when the resistance against
several variants of differential cryptanalysis is quantified. According to the definition,
the differential spectrum of a power mapping F (x) with δ(F ) = δ satisfies the following
identities:

δ∑

i=0

ωi = pn and
δ∑

i=0

iωi = pn. (1)

It is an interesting topic to completely determine the differential spectra of power map-
pings with low differential uniformity. However, this problem typically involves solving
nonlinear equations and is generally challenging. More explanations about this topic can
be found in [9, 10] and references therein.

Let p be an odd prime, n be a positive integer and

d =

{
pn+1

4
+ pn−1

2
, if pn ≡ 3 (mod 8),

pn+1
4
, if pn ≡ 7 (mod 8).

(2)

It was proved that F (x) = xd is an APN function over Fpn when pn > 7 [6]. Notice that
when pn = 7 or pn = 3, we have d = 2 and the function xd is a PN function. For the case
p = 3, the APN mapping F (x) = xd is a special case of the power mapping investigated
in [5], for which the differential spectrum has been determined. For p > 3, utilizing the
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theory of elliptic curves, Tan and Yan in [10] determined the number of solutions, denoted
by M , to the following equation system

{
x1 − x2 + x3 − x4 = 0,

xd1 − xd2 + xd3 − xd4 = 0,

which yields the identity
∑2

i=0 i
2ωi = ω1 + 4ω2 = (M − p2n)/(pn − 1). Combining this

identity and those in (1), they obtained a system of linear equations and derived the
differential spectrum [ω0, ω1, ω2] of F (x) = xd. This commonly-used method can provide
the differential spectra of certain power functions, nevertheless, it does not provide further
insight into solving the differential equation. Accordingly, it gives little information about
the DDTs.

In this paper, by directly investigating the differential equation D1F (x) = (x+ 1)d −
xd = b of F (x) = xd, we propose an efficient method to solve it. Then, we characterize
the conditions on b under which the differential equation D1F (x) = b has exactly zero
solution, one solution, and two solutions, respectively. By counting the number of those
b’s in all cases, we obtain the differential spectrum of F (x) = xd. In this way we release
more information about the solutions of the differential equation D1F (x) = b, which can
be used to describe the form of the DDT of this APN power function.

2 Main results and their proofs

In this section, we will investigate the differential equation of the APN function F (x) = xd

with d in (2), and then derive the differential spectrum of F (x). The techniques for
investigating the differential equation mainly come from [6, Theorem 4], but additional
discussions are required. In the case p > 3, the differential spectrum will be expressed
in terms of some quadratic character sums. When dealing with the quadratic character
sums appeared in this case, we use the theory of elliptic curves and some techniques that
are similar to those in [10].

Now we begin to deal with the differential equation of F (x) = xd. Recall that the
positive integer d given in (2) has the following two properties:
(i) gcd(d, pn − 1) = 2, and thus d is even;
(ii) 2d ≡ pn+1

2
(mod pn − 1).

In the sequel our discussions are always under the condition that pn > 3. The differential
equation D1F (x) = b of F (x) = xd is given by

D1F (x) = (x+ 1)d − xd = b. (3)

For convenience, let N(b) denote the number of its solutions in Fpn . If b = 0, since
gcd(d, pn − 1) = 2 the differential equation D1F (x) = 0 has only one solution x = −1

2
.

This shows thatN(0) = 1. Hence, in the sequel we will investigate the differential equation
D1F (x) = b for b ∈ F∗pn .

From (3) we see that when x = 0, b = 1; when x = −1, b = −1. This implies
that for each b ∈ {±1}, the differential equation D1F (x) = b has exactly one solution
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in {0,−1}. In order to determine N(1) (resp. N(−1)), we shall determine how many
solutions D1F (x) = 1 (resp. D1F (x) = −1 ) has in Fpn \ {0,−1}. Moreover, for each
b ̸= ±1, the solutions of D1F (x) = b (if they exist) must belong to Fpn \{0,−1}. Thus, in
what follows we only need to investigate the differential equation D1F (x) = b under that
conditions that x ∈ Fpn \ {0,−1} and b ̸= 0. Set

vx = xd and vx+1 = (x+ 1)d.

Then, v2x = x
pn+1

2 = χ(x)x and v2x+1 = χ(x + 1)(x + 1) since 2d ≡ pn+1
2

(mod pn − 1),

where χ(x) = x
pn−1

2 is the quadratic character of x ∈ Fpn [7]. Note that the expression
v2x = χ(x)x implies that x is uniquely determined by vx and χ(x).

Lemma 1 With the notation introduced above, let vx = xd and vx+1 = (x + 1)d. When
x /∈ {0,−1}, for each b ̸= 0, the differential equation (3) is equivalent to the following
equation system

{
(χ(x+ 1)χ(x)− 1) v2x − 2bvx + χ(x+ 1)− b2 = 0,

χ(vx + b) = 1.
(4)

Proof: If x ∈ Fpn \ {0,−1} satisfies (3), then we have

vx+1 = vx + b. (5)

Squaring both sides of (5) yields

v2x+1 = v2x + 2bvx + b2. (6)

Substituting v2x = χ(x)x and v2x+1 = χ(x+ 1)(x+ 1) into the above equation, we have

(χ(x+ 1)− χ(x))x+ χ(x+ 1)− b2 − 2bvx = 0, (7)

which can be rewritten as

(χ(x+ 1)χ(x)− 1)χ(x)x+ χ(x+ 1)− b2 − 2bvx = 0. (8)

Furthermore, substituting x = χ(x)v2x into (8), we get the first equation of (4). The
second equation χ(vx + b) = 1 is obvious due to (5) and vx+1 = (x+ 1)d.

Conversely, let x ∈ Fpn \ {0,−1} be a solution of (4). Reversing the process from (6)
to (8), we can deduce that

−vx+1 = vx + b or vx+1 = vx + b.

If vx + b is square, then x will satisfy the differential equation vx+1 = vx + b since −1 is a
nonsquare and vx+1 is a square. □

Given b ̸= 0, the differential equation D1F (x) = b is transformed to the equation
system (4), where the first equation can be regarded as a quadratic equation in variable
vx. We have the following method of finding its solutions in Fpn \ {0,−1}:
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• Step 1: Pose a restriction on (χ(x), χ(x+ 1)), which ranges over the set

{(1, 1), (1,−1), (−1, 1), (−1,−1)};

• Step 2: For each given (χ(x), χ(x + 1)) = (ϵ1, ϵ2), solve the first equation in (4) in
variable vx, where ϵi ∈ {±1}, i = 1, 2;

• Step 3: If the solution vx satisfies

χ(vx) = 1 and χ(vx + b) = 1, (9)

then x = v2xχ(x) = v2xϵ1 is a solution of (4).

• Step 4: Repeat the steps 2 and 3 until (ϵ1, ϵ2) takes all possible values. Collecting
all the x’s obtained in the Step 3, we get the solutions of (4) in Fpn \ {0,−1}.

To validate the above method, we need to verify that each x obtained in Step 3 must
be a solution to the equation (4). More precisely, we need to show that for each given
(ϵ1, ϵ2), the x obtained in Step 3 (if it exists) satisfies χ(x) = ϵ1, χ(x+1) = ϵ2 and x

d = vx
(here vx is the solution of the quadratic equation (ϵ2ϵ1− 1)v2x− 2bvx+ ϵ2− b2 = 0 for each
given (ϵ1, ϵ2)). It is obvious that the x satisfies χ(x) = ϵ1 since x = v2xϵ1. Furthermore,
by v2x = xϵ1, we get xdϵd1 = xd = v2dx = χ(vx)vx. With the condition χ(vx) = 1, we can
conclude that the x obtained in Step 3 satisfies vx = xd. Next we verify that satisfies
χ(x+ 1) = ϵ2. Note that

(ϵ2ϵ1 − 1)v2x − 2bvx + ϵ2 − b2 = ϵ2(v
2
xϵ1 + 1)− (vx + b)2 = 0,

which implies
ϵ2(v

2
xϵ1 + 1) = (vx + b)2.

Then, it follows that χ (ϵ2(v
2
xϵ1 + 1)) = 1. Since x = v2xϵ1, we have χ(x+ 1) = ϵ2. Due to

the condition χ(vx+ b) = 1 in (9), the obtained x also satisfies the second equation of (4).
Therefore, the method described above is valid, and according to Lemma 1, it provides
an efficient approach to deal with the differential equation D1F (x) = b in (3).

For the sake of brevity, we introduce the following sets




B1 := {b ∈ F∗pn | χ
(

1−b2
2b

)
= χ

(
1+b2

2b

)
= 1},

B2 := {b ∈ F∗pn | χ
(
−1−b2

2b

)
= χ

(
−1+b2

2b

)
= 1},

B3 := {b ∈ F∗pn | χ
(
−1−b2

2

)
= χ(−2− b2) = 1},

B4 := {b ∈ F∗pn | χ
(

1−b2
2

)
= χ(2− b2) = 1},

(10)

where pn > 3. Generally, these sets have the following relations as illustrated in Figure 1:
(i) {0,±1} ∩ ∪4

i=1Bi = ∅;
(ii) B1 ∩ B2 = ∅;
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Figure 1: Diagram of Bi (i = 1, 2, 3, 4) and their relations

Fpn

B1 B2

B3

B4
0,±1

(iii) Bi ∩ B3 ∩ B4 = ∅, i = 1, 2.
It is easy to verify the properties (i) and (ii). The reason for the property (iii) is given

as follows. For b ∈ B1 ∪ B2, we have

χ

(
1− b2
2b

)
χ

(
1 + b2

2b

)
= χ

(
1− b2

2

)
χ

(
1 + b2

2

)
= 1,

while for b ∈ B3 ∩ B4, we have

χ

(
1− b2

2

)
χ

(
1 + b2

2

)
= −1.

Thus, the intersection is empty.
Set 




C1 := {x ∈ F∗pn | (χ(x), χ(x+ 1)) = (1, 1)},

C2 := {x ∈ F∗pn | (χ(x), χ(x+ 1)) = (−1,−1)},

C3 := {x ∈ F∗pn | (χ(x), χ(x+ 1)) = (1,−1)},

C4 := {x ∈ F∗pn | (χ(x), χ(x+ 1)) = (−1, 1)}.
Then, Ci, i = 1, 2, 3, 4, are pairwise disjoint and ∪4i=1Ci = Fpn \ {0,−1}. With these
preparations, we give the following proposition.

Proposition 1 With the notation introduced above, let d be the positive integer defined
in (2) with pn > 3, and F (x) = xd be the power mapping over Fpn. Then, when b ̸= 0, the
differential equation (x + 1)d − xd = b has at most one solution in Ci, and it has exactly
one solution in Ci if and only if b ∈ Bi, i = 1, 2, 3, 4.

Proof: By Lemma 1, for each b ̸= 0, we only need to consider the number of solutions of
(4) in Fpn \ {0,−1}. We distinguish four cases.

Case 1: x ∈ C1, i.e., (χ(x), χ(x+ 1)) = (1, 1). Then (4) becomes

{
vx = 1−b2

2b
,

χ
(

1+b2

2b

)
= 1.
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According to (9), this case contributes one solution if and only if b ∈ B1.
Case 2: x ∈ C2, i.e., (χ(x), χ(x + 1)) = (−1,−1). In this case, (4) can be rewritten

as

{
vx = −1−b2

2b
,

χ
(
−1+b2

2b

)
= 1.

Similarly, this case contributes one solution if and only if b ∈ B2.
Case 3: x ∈ C3, i.e., (χ(x), χ(x+ 1)) = (1,−1). In this case, (4) becomes

{
v2x + bvx +

1+b2

2
= 0,

χ(vx + b) = 1.
(11)

The first equation in (11) is a quadratic equation in variable vx and its discriminant is
equal to −2 − b2. If χ(−2 − b2) = 1, (11) is equivalent to the following two equation
systems:

{
vx1 =

−b+
√
−2−b2
2

,

χ(vx1 + b) = χ
(

b+
√
−2−b2
2

)
= 1,

(12)

or {
vx2 =

−b−
√
−2−b2
2

,

χ(vx2 + b) = χ
(

b−
√
−2−b2
2

)
= 1.

(13)

Note that vxi
(vxi

+b) = −1−b2
2

, i = 1, 2. To make sure (12) or (13) contributes one solution

to (4), it is necessary to have χ
(
−1−b2

2

)
= 1, which further implies that χ(vx1vx2) =

χ
(

1+b2

2

)
= −1. So one and only one of vx1 and vx2 is square. Therefore, we can conclude

that when b ∈ B3, one and only one of (12) and (13) contributes one solution to (4).
Note that if −2 − b2 = 0, the first equation in (4) has only one solution vx, and this

solution satisfies vx(vx + b) = −b2
4
, which is a nonsquare. Thus, the condition in (9) does

not hold. So (4) has no solution in this case.
The above discussions show that when x ∈ C3, (4) has at most one solution, and it

has exactly one solution if and only if b ∈ B3.
Case 4: x ∈ C4, i.e., (χ(x), χ(x+ 1)) = (−1, 1). In this case, (4) becomes

{
v2x + bvx +

−1+b2

2
= 0,

χ(vx + b) = 1.
(14)

The first equation in (14) is also a quadratic equation in variable vx and the discriminant

is equal to 2 − b2. If χ(2 − b2) = 1, it has two solutions, denoted by vx1 = −b+
√
2−b2

2
and

vx2 = −b−
√
2−b2

2
, which satisfy vxi

(vxi
+ b) = 1−b2

2
, i = 1, 2. To make sure that (14) can

have solutions, it is necessary to have χ
(

1−b2
2

)
= 1, which leads to that χ

(
−1+b2

2

)
=

χ(vx1vx2) = −1. This means that one and only one of vx1 and vx2 is square. Therefore,
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when b ∈ B4, (14) can contribute one and only one solution to (4). Moreover, if 2−b2 = 0,
we have vx(vx + b) = −b2

4
, which is a nonsquare. Due to (9), we know that under this

condition (14) has no solution. Therefore, we can conclude that this case can contribute
exactly one solution if and only if b ∈ B4.

Based on the results obtained in Cases 1-4, we get the the desired result. □
According to Proposition 1 and its proof, we can characterize the conditions on b for

which the differential equation (x+1)d−xd = b has no solution, exactly one solution and
two solutions, respectively.

Proposition 2 With the same notation as in Proposition 1, for each b ∈ Fpn, let p
n > 3

and N(b) denote the number of solutions x ∈ Fpn to the differential equation D1F (x) =
(x+ 1)d − xd = b. Then,

N(b) =





0, if b ∈ Fpn \ ({0,±1} ∪ B) ,
1, if b ∈ {0,±1} ∪ B \ B̃,
2, if b ∈ B̃,

(15)

where B = ∪4i=1Bi, and B̃ = (B1 ∩ B3) ∪ (B1 ∩ B4) ∪ (B2 ∩ B3) ∪ (B2 ∩ B4) ∪ (B3 ∩ B4),
which corresponds to the gray areas shown in Figure 1.

Proof: Recall that x = 0 (resp. x = −1) is a solution of D1F (x) = 1 (resp. D1F (x) = −1).
Due to Proposition 1 and the fact ±1 /∈ B, we know that for each b ∈ {±1}, the differential
equation D1F (x) = b has no solution in ∪4i=1Ci = Fpn \ {0,−1} and thus N(±1) = 1.
Together with the fact N(0) = 1, we have N(b) = 1 for b ∈ {0,±1}. On the other hand,
for each b /∈ {±1}, the differential equation D1F (x) = b has no solution in {0,−1} and
its solutions in Fpn are exactly those in Fpn \ {0,−1}. Thus, according to Proposition 1,
we conclude that N(b) ≥ 1 if b ∈ B, and N(b) = 0 if b /∈ {0,±1} ∪ B.

Furthermore, note that the properties (ii) and (iii) about the sets Bi (i = 1, 2, 3, 4)
imply that the differential equation cannot have solutions in C1 and C2 simultaneously, and
cannot have solutions simultaneously in any three sets of Ci, i = 1, 2, 3, 4, either. Thus,
for each b ∈ B, N(b) ≤ 2. Moreover, according to Proposition 1 and its proof, N(b) = 2 if
and only if b belongs to the intersection of any two sets of Bi, i = 1, 2, 3, 4. Thus N(b) = 2

if and only if b ∈ B̃. Removing the elements in B̃ from the set B and adding the elements
of {0,±1}, we can get the elements b such that N(b) = 1. The relationships between the
sets mentioned above can be easily observed with the help of Figure 1. □

Proposition 2 has characterized the sets of elements b for N(b) = 0, 1 and 2 , respec-
tively. Next we need to calculate the cardinalities of the sets in Proposition 2, thereby
determining the differential spectrum of F (x) = xd. The sets Bi, i = 1, 2, 3, 4, are defined
in terms of quadratic characters. Hence we use quadratic character sums to calculate the
cardinalities of the sets in (15) in Propositions 2. Many quadratic character sums involved
can be reduced to a simpler form in the case p = 3. Thus, we deal with the cases p > 3
and p = 3 separately. We first consider the case p > 3.
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When p > 3 , for simplicity, we will express the relevant quadratic character sums
in terms of the following three quadratic character sums:

Γ(1)
p,n =

∑

x∈Fpn

χ (x(x− 1)(x− 3)) , (16)

Γ(2)
p,n =

∑

x∈Fpn

χ (x(x− 1)(x+ 2)) , (17)

and

Γ(3)
p,n =

∑

x∈Fpn

χ (x(x− 1)(x+ 3)) . (18)

These three quadratic character sums can be evaluated by the theory of elliptic curves,
and the details have been described in [9] and [10]. The following two lemmas evaluate
the quadratic character sums derived from Propositions 2, some of which are expressed
in terms of Γ

(i)
p,n, i = 1, 2, 3.

Lemma 2 Let p > 3, and pn ≡ 3 (mod 8) or pn ≡ 7 (mod 8). Then, we have 24 identities

in Table 1, where Γ
(1)
p,n, Γ

(2)
p,n and Γ

(3)
p,n are defined in (16), (17) and (18), respectively.

Table 1: Some identities about quadratic character sums
1)

∑
x∈Fpn

χ (x(x2 − 1)) = 0 2)
∑

x∈Fpn
χ (x(x2 + 1)) = 0

3)
∑

x∈Fpn
χ (x(1− 2x)(2− 2x)) = 0 4)

∑
x∈Fpn

χ (x(1 + x)(2− 2x)) = 0

5)
∑

x∈Fpn
χ (x(x+ 1)(x− 1)(x+ 3)(3x+ 1)) = 0 6)

∑
x∈Fpn

χ (x(2x+ 1)(2x− 2)) = χ(2)Γ
(1)
p,n

7)
∑

x∈Fpn
χ (x(x+ 1)(3x+ 1)) = Γ

(2)
p,n 8)

∑
x∈Fpn

χ (x(2x− 2)(6x− 2)) = −Γ(2)
p,n

9)
∑

x∈Fpn
χ (x(2x− 2)(6− 2x)) = Γ

(2)
p,n 10)

∑
x∈Fpn

χ (x(x− 1)(3x+ 1)) = −Γ(3)
p,n

11)
∑

x∈Fpn
χ (x(x+ 1)(6x− 2)) = χ(2)Γ

(3)
p,n 12)

∑
x∈Fpn

χ (x(x+ 1)(6− 2x)) = χ(2)Γ
(3)
p,n

13)
∑

x∈Fpn
χ (x(3x+ 1)(x+ 3)) = −Γ(3)

p,n 14)
∑

x∈Fpn
χ ((2− 2x2)(2 + 2x2)) = 1

15)
∑

x∈Fpn
χ ((2− 2x2)(2 + x2)) = χ(2) + χ(2)Γ

(1)
p,n 16)

∑
x∈Fpn

χ ((2− 2x2)(2− x2)) = −χ(2)
17)

∑
x∈Fpn

χ ((2 + 2x2)(2− x2)) = χ(2)− χ(2)Γ(1)
p,n 18)

∑
x∈Fpn

χ ((2 + 2x2)(2 + x2)) = −χ(2)
19)

∑
x∈Fpn

χ ((2− x2)(2 + x2)) = 1 20)
∑

x∈Fpn
χ ((2− 2x2)(2 + 2x2)(2 + x2)) = 1 + Γ

(2)
p,n − Γ

(3)
p,n

21)
∑

x∈Fpn
χ ((2− 2x2)(2 + 2x2)(2− x2)) = −1 + Γ

(2)
p,n + Γ

(3)
p,n 22)

∑
x∈Fpn

χ ((2− x2)(2 + x2)(2 + 2x2)) = χ(2) + χ(2)Γ
(3)
p,n − Γ

(2)
p,n

23)
∑

x∈Fpn
χ ((2− x2)(2 + x2)(2− 2x2)) = −χ(2) + χ(2)Γ

(3)
p,n + Γ

(2)
p,n 24)

∑
x∈Fpn

χ ((2− 2x2)(2 + 2x2)(2 + x2)(2− x2)) = −1− Γ
(3)
p,n

Proof: See Appendix A. □
The conditions that pn ≡ 3 (mod 8) or pn ≡ 7 (mod 8) are equivalent to n being

odd and p ≡ 3 (mod 8) or p ≡ 7 (mod 8). Note that the element 2 is a nonsquare in
Fp if p ≡ 3 (mod 8) and a square in Fp if p ≡ 7 (mod 8), and −1 is a nonsquare when
pn ≡ 3 (mod 4). Therefore, the element 2 is a square in Fpn if pn ≡ 7 (mod 8), and a
nonsquare if pn ≡ 3 (mod 8); −2 is a nonsquare in Fpn if pn ≡ 7 (mod 8), and a square
if pn ≡ 3 (mod 8). In order to present our main results, we need to define the following
three sets

A1 =

{
{±1, ±

√
−2}, if pn ≡ 3 (mod 8),

{±1}, if pn ≡ 7 (mod 8),
(19)
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A2 =

{
{±1}, if pn ≡ 3 (mod 8),

{±1,±
√
2}, if pn ≡ 7 (mod 8),

(20)

and
A = A1 ∪ A2. (21)

Lemma 3 With the notation introduced above, let p > 3, and pn ≡ 3 (mod 8) or pn ≡
7 (mod 8), then we have
∑

x∈Fpn\A1

(
(1− χ(2− 2x2))(1− χ(2 + 2x2))(1− χ(2 + x2))

)
= pn+1+χ(2)Γ(1)

p,n−Γ(2)
p,n+Γ(3)

p,n,

∑

x∈Fpn\A2

(
(1 + χ(2− 2x2))(1 + χ(2 + 2x2))(1 + χ(2− x2))

)
= pn−7−χ(2)Γ(1)

p,n+Γ(2)
p,n+Γ(3)

p,n,

and
∑

x∈Fpn\A

(
(1 + χ(2− 2x2))(1− χ(2 + 2x2))(1 + χ(2− x2))(1− χ(2 + x2))

)
= pn+1−2Γ(2)

p,n−3Γ(3)
p,n,

where Γ
(1)
p,n, Γ

(2)
p,n and Γ

(3)
p,n are defined in (16), (17) and (18), respectively.

Proof: See Appendix B.
□

Keeping the notation introduced above, we have the following main theorem.

Theorem 1 Let d be defined in (2) and F (x) = xd be the power mapping over Fpn. When
p > 3 and pn > 7, the differential spectrum of F (x) = xd is given by

[ω0, ω1, ω2 ] = [
5pn − 27− 2Γ

(2)
p,n + Γ

(3)
p,n

16
,
3pn + 27 + 2Γ

(2)
p,n − Γ

(3)
p,n

8
,
5pn − 27− 2Γ

(2)
p,n + Γ

(3)
p,n

16
],

where Γ
(2)
p,n and Γ

(3)
p,n are given in (17) and (18).

Proof: Determining the differential spectrum of F (x) = xd requires calculating the cardi-

nalities of the sets in (15). We start with calculating the cardinality of B̃, which is exactly
the component ω2 in the differential spectrum of F (x). According to (10), we have

|B1 ∩ B3| = |{b ∈ F∗pn | χ
(

1−b2
2b

)
= 1, χ

(
1+b2

2b

)
= 1, χ

(
−1−b2

2

)
= 1, χ(−2− b2) = 1}|

= |{b ∈ F∗pn | χ(2− 2b2) = −1, χ(2 + 2b2) = −1, χ(2 + b2) = −1, χ(b) = −1}|,

|B1 ∩ B4| = |{b ∈ F∗pn | χ(2− 2b2) = 1, χ(2 + 2b2) = 1, χ(2− b2) = 1, χ(b) = 1}|,

|B2 ∩ B3| = |{b ∈ F∗pn | χ(2− 2b2) = −1, χ(2 + 2b2) = −1, χ(2 + b2) = −1, χ(b) = 1}|,

|B2 ∩ B4| = |{b ∈ F∗pn | χ(2− 2b2) = 1, χ(2 + 2b2) = 1, χ(2− b2) = 1, χ(b) = −1}|,
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and

|B3 ∩ B4| = |{b ∈ F∗pn | χ(2− 2b2) = 1, χ(2 + 2b2) = −1, χ(2− b2) = 1, χ(2 + b2) = −1}|.
Note that the sets B1 ∩ B3, B1 ∩ B4, B2 ∩ B3, B2 ∩ B4 and B3 ∩ B4 are pairwise disjoint,
see Figure 1. Denote the cardinality of Bi ∩ Bj by Ni,j, where i ̸= j. It can be seen that
N1,3 = N2,3 since b ∈ B1 ∩ B3 if and only if −b ∈ B2 ∩ B3. Similarly, N1,4 = N2,4 since
b ∈ B1 ∩ B4 if and only if −b ∈ B2 ∩ B4. Moreover, we have

8(N1,3 +N2,3) =
∑

x∈F∗
pn\A1

(
(1− χ(2− 2x2))(1− χ(2 + 2x2))(1− χ(2 + x2))

)
,

8(N1,4 +N2,4) =
∑

x∈F∗
pn\A2

(
(1 + χ(2− 2x2))(1 + χ(2 + 2x2))(1 + χ(2− x2))

)
,

and

16N3,4 =
∑

x∈F∗
pn\A

(
(1 + χ(2− 2x2))(1− χ(2 + 2x2))(1 + χ(2− x2))(1− χ(2 + x2))

)
,

where A1, A2 and A being defined in (19), (20) and (21), respectively. By Lemma 3, we
obtain

N1,3 +N2,3 =
pn + 1 + χ(2)Γ

(1)
p,n − Γ

(2)
p,n + Γ

(3)
p,n − (1− χ(2))3

8
,

N1,4 +N2,4 =
pn − 7− χ(2)Γ(1)

p,n + Γ
(2)
p,n + Γ

(3)
p,n − (1 + χ(2))3

8
,

N3,4 =
pn + 1− 2Γ

(2)
p,n − 3Γ

(3)
p,n

16
.

Then we obtain

ω2 = |B̃| = N1,3 +N1,4 +N2,3 +N2,4 +N3,4 =
5pn − 27− 2Γ

(2)
p,n + Γ

(3)
p,n

16
. (22)

Next we determine the component ω1 in the differential spectrum of F (x). Based on
the properties of Bi, i = 1, 2, 3, 4, which are illustrated in Figure 1, we have

|{0,±1} ∪ B \ B̃| = 3 +
4∑

i=1

|Bi| − 2|B̃|. (23)

According to the definition of Bi in (10), i = 1, 2, 3, 4, we can calculate their cardinalities
as follows.

4|B1| =
∑

x∈Fpn\{0,±1}

(
1 + χ(2x(1 + x2))

) (
1 + χ(2x(1− x2))

)

= pn − 4 +
∑

x∈Fpn

χ(2x(1 + x2)) +
∑

x∈Fpn

χ(2x(1− x2)) +
∑

x∈Fpn

χ
(
(1− x2)(1 + x2)

)

= pn − 3,
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where we use the identities 1), 2) and 14) in Table 1. Similarly, we have

4|B2| =
∑

x∈Fpn\{0,±1}

(
1− χ(2x(1 + x2))

) (
1− χ(2x(1− x2))

)

= pn − 3.

Let A1 and A2 be the sets defined in (19) and (20), respectively. Then

4|B3| =
∑

F∗
pn\A1

(
(1− χ(2 + 2x2)

) (
1− χ(2 + x2)

)

=
∑

x∈Fpn

(
1− χ(2 + 2x2)

) (
1− χ(2 + x2)

)
− (1− χ(2))2

= pn + χ(2) + 1 +
∑

x∈Fpn

χ
(
(2 + 2x2)(2 + x2)

)
− (1− χ(2))2

= pn + 1− (1− χ(2))2,

where we use the identity 18) in Table 1. Similarly,

4|B4| =
∑

x∈Ω1=F∗
pn\A2

(
(1 + χ(2− 2x2))(1 + χ(2− x2))

)

=
∑

x∈Fpn

(
(1 + χ(2− 2x2))(1 + χ(2− x2))

)
− (1 + χ(2))2 − 4

= pn − 3− (1 + χ(2))2.

Therefore, we get
4∑

i=1

|Bi| = pn − 3. (24)

Substituting (24) and (22) into (23), we obtain

ω1 =
3pn + 27 + 2Γ

(2)
p,n − Γ

(3)
p,n

8
.

Finally, we determine the component ω0 in the differential spectrum of F (x). Accord-
ing to (15), (24) and (22), we get

ω0 = pn − 3− |B| = pn − 3−
4∑

i=1

|Bi|+ |B̃| =
5pn − 27− 2Γ

(2)
p,n + Γ

(3)
p,n

16
.

The proof is finished. □

Remark 1 After we determined the component ω2 in (22), we actually can utilize the
identities (1) to derive ω1 and ω0. Here we don’t use these identities since we want to
give a direct calculation via determining the sizes of the corresponding sets. The reason

Sequences and Their Applications (SETA) 2024 12



The Differential Spectrum of an APN Power Mapping

why we can do this lies in that we successfully characterize the conditions on b under
which the differential equation D1F (x) = b has exactly i solution(s) in Fpn, i = 0, 1, 2.
This characterization reveals more essential information about the differential equation
D1F (x) = b and can be used to describe the form of the DDT of F (x) = xd.

Remark 2 When the power function F (x) = xd in this theorem is APN, we must have

ω2 =
5pn−27−2Γ(2)

p,n+Γ
(3)
p,n

16
> 0. According to the Weil bound in [7, Theorem 5.41], when p > 3

we have −2√pn ≤ Γ
(2)
p,n, Γ

(3)
p,n ≤ 2

√
pn. Thus,

5pn − 27− 2Γ(2)
p,n + Γ(3)

p,n ≥ 5pn − 6
√
pn − 27.

To make sure ω2 > 0, it suffices that 5pn− 6
√
pn− 27 > 0, which implies pn > 9. When p

is odd and n is odd, pn > 9 is equivalent to that pn > 7. This explains again why we need
the condition pn > 7 when xd is APN.

Remark 3 When pn = 7, by Magma, we get Γ
(2)
p,n = 4 and Γ

(3)
p,n = 0. Using the the

formulas in Theorem 1, we get ω2 = 0, ω1 = 7 and ω0 = 0, which coincides with the fact
that xd is the PN function x2 when pn = 7. This shows that the formulas of the differential
spectrum in this theorem also hold for pn = 7.

Remark 4 Note that

Γ(2)
p,n =

∑

x∈Fpn

χ (−x(−x− 1)(−x+ 2)) = −
∑

x∈Fpn

χ (x(x+ 1)(x− 2))

and
Γ(3)
p,n =

∑

x∈Fpn

χ (−x(−x− 1)(−x+ 3)) = −
∑

x∈Fpn

χ (x(x+ 1)(x− 3)) .

Therefore, Theorem 1 agrees with Theorem 3 in [10].

Next we give the differential spectrum of F (x) = xd in the case p = 3.

Theorem 2 Let p = 3, n ≥ 3 and F (x) = xd be the power mapping over Fpn with d being
defined by (2). The differential spectrum of F (x) = xd is given by

[ω0, ω1, ω2 ] = [
pn − 3

2
, 3,

pn − 3

2
].

Proof: With the same notation in Proposition 2, when p = 3, besides the properties
displayed in Figure 1, the sets Bi, i = 1, 2, 3, 4, in (10) have more special properties as
follows:
(a) when χ(b) = 1, B1 ∩ B3 = ∅, B1 = B4, B2 = B3, and B2 ∩ B4 = ∅;
(b) when χ(b) = −1, B1 = B3, B1 ∩ B4 = ∅, B2 ∩ B3 = ∅, and B2 = B4;
(c) B3 ∩ B4 = ∅.
From the properties above, we know that

B̃ = B1 ∪ B2 and B = B1 ∪ B2.
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Utilizing the the theory of quadratic character sums, we can get |B1| = |B2| = 3n−3
4

. Then,

according to Proposition 2, we get ω2 = |B̃| = |B1|+|B2| = 3n−3
2
, ω1 = |{0,±1}∪B\B̃| = 3,

and ω0 = pn − 3− |B| = 3n−3
2

. □
As a special case of Theorem 3 in [5], by taking m = 1 there, one gets the same result

of Theorem 2.

3 Conclusion

In this paper, we study the differential spectrum of the APN function F (x) = xd over
Fpn , where p

n > 7, d = pn+1
4

+ pn−1
2

if pn ≡ 3 (mod 8) and d = pn+1
4

if pn ≡ 7 (mod 8).
We first present an efficient algorithm to find the solutions of the differential equation
D1F (x) = b, and then characterize the conditions on b under which D1F (x) = b has exactly
two solutions, one solution and no solution, respectively. We determine the cardinalities
of the associated sets by the theory of elliptic curves, and thus obtain the differential
spectrum of F (x). Compared with the method in [10], we provide a direct method for
computing the differential spectrum of F (x). In addition, the obtained results about the
differential equation D1F (x) = b can be used to describe the form of the DDT of F (x).
Thus, our method explores more information about the differential properties of this APN
function. The idea used in this paper may be used to calculate the differential spectra of
other power mappings over finite fields of odd characteristic.
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Appendix A

The Proof of Lemma 2: All these identities are required to calculates the sizes of
the sets appeared in Proposition 2. The identities 3) to 13) will be used in the proofs
of the identities 14) to 24). We only give the proof for identities 1), 13), 14) and 20) in
Table 1. The other identities can be similarly proved.

Identity 1): Let x = −u, then we have

∑

x∈Fpn

χ(x(x2 − 1)) =
∑

u∈Fpn

χ(−u(u2 − 1)) = χ(−1)
∑

u∈Fpn

χ(u(u2 − 1))

which implies that
∑

x∈Fpn

χ(x(x2 − 1)) = 0 since χ(−1) = −1.

Identity 13): Note that

∑

x∈Fpn

χ (x(3x+ 1)(x+ 3)) =
∑

x∈Fpn

χ (3x(3x+ 1)(3x+ 9))

=
∑

u∈Fpn

χ (u(u+ 1)(u+ 9))

=
∑

u∈F∗
pn

χ

(
(u+ 1)(u+ 9)

u

)
.

Sequences and Their Applications (SETA) 2024 15



Y. Xia, F. Bao, S. Chen, T. Helleseth

For u ̸= 0, let
(u+ 1)(u+ 9)

u
= v,

then each v ∈ Fpn corresponds to 1 + χ ((v − 4)(v − 16)) u’s. Thus, we obtain

∑

u∈F∗
pn

χ

(
(u+ 1)(u+ 9)

u

)
=
∑

v∈Fpn

χ(v) (1 + χ((v − 4)(v − 16)))

=
∑

v∈Fpn

χ (v(v − 4)(v − 16))

=
∑

v∈Fpn

χ
(v
4
(
v

4
− 1)(

v

4
− 4)

)
.

Furthermore, let t = v
4
− 1 and w = −t, then

∑

u∈F∗
pn

χ

(
(u+ 1)(u+ 9)

u

)
=
∑

v∈Fpn

χ
(v
4
(
v

4
− 1)(

v

4
− 4)

)

=
∑

t∈Fpn

χ (t(t+ 1)(t− 3))

=
∑

w∈Fpn

χ (w(1− w)(w + 3))

= −Γ(3)
p,n.

Identity 14): Note that
∑

x∈Fpn

χ
(
(2− 2x2)(2 + 2x2)

)
=
∑

x∈Fpn

χ
(
(1− x2)(1 + x2)

)

=
∑

x∈Fpn\{±1}
χ

(
1 + x2

1− x2
)
.

Let 1+x2

1−x2 = u, then x and u satisfy

(u+ 1)x2 + 1− u = 0. (25)

When u ̸= −1, (25) is a quadratic equation in variable x, and its discriminant is ∆ =
4(u + 1)(u − 1). For each u ̸= −1, it corresponds to (1 + χ(∆)) x’s via (25). Thus, we
obtain

∑

x∈Fpn\{±1}
χ

(
1 + x2

1− x2
)

=
∑

u̸=−1
χ(u) (1 + χ((u+ 1)(u− 1)))

= 1 +
∑

u∈Fpn

χ(u) +
∑

u∈Fpn

χ
(
u(u2 − 1)

)
.
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This together with the identity 1) shows that
∑

x∈Fpn

χ ((1− x2)(1 + x2)) = 1.

Identity 20): We have

∑

x∈Fpn

χ
(
(2− 2x2)(2 + 2x2)(2 + x2)

)
=

∑

x∈Fpn\{±1}
χ

(
1 + x2

1− x2 (2 + x2)

)
.

Let 1+x2

1−x2 = u, then x and u satisfy

(u+ 1)x2 + 1− u = 0. (26)

When u ̸= −1, (26) is a quadratic equation in variable x, and its discriminant is 4(u +
1)(u − 1). For each u ∈ Fpn \ {−1}, it corresponds (1 + χ(∆)) x’s via (26). Moreover,
from (26), we have 2 + x2 = 3u+1

u+1
. Thus,

∑

x∈Fpn\{±1}
χ

(
1 + x2

1− x2 (2 + x2)

)

=
∑

u̸=−1
χ

(
u

(
3u+ 1

u+ 1

))
(1 + χ(u+ 1)(u− 1))

=
∑

u̸=−1
χ(u(u+ 1)(3u+ 1)) +

∑

u̸=−1
χ (u(3u+ 1)(u− 1))

=
∑

u∈Fpn

χ(u(u+ 1)(3u+ 1)) +
∑

u∈Fpn

χ (u(3u+ 1)(u− 1)) + 1.

Furthermore, utilizing the identities 7) and 10), we have
∑

x∈Fpn

χ ((2− 2x2)(2 + 2x2)(2 + x2)) =

1 + Γ
(2)
p,n − Γ

(3)
p,n. □

Appendix B

The Proof of Lemma 3:
For the first equation, we have

∑

x∈Fpn\A1

(
(1− χ(2− 2x2))(1− χ(2 + 2x2))(1− χ(2 + x2))

)

=
∑

x∈Fpn

1−
∑

x∈Fpn

χ(2− 2x2)−
∑

x∈Fpn

χ(2 + 2x2)−
∑

x∈Fpn

χ(2 + x2)

+
∑

x∈Fpn

χ
(
(2− 2x2)(2 + 2x2)

)
+
∑

x∈Fpn

χ
(
(2− 2x2)(2 + x2)

)

+
∑

x∈Fpn

χ
(
(2 + 2x2)(2 + x2)

)
−
∑

x∈Fpn

χ
(
(2− 2x2)(2 + 2x2)(2 + x2)

)

−
∑

A1

(
(1− χ(2− 2x2))(1− χ(2 + 2x2))(1− χ(2 + x2))

)
.

Sequences and Their Applications (SETA) 2024 17



Y. Xia, F. Bao, S. Chen, T. Helleseth

Note that
∑
A1

((1− χ(2− 2x2))(1− χ(2 + 2x2))(1− χ(2 + x2))) = 0, and the character

sums associated with any quadratic polynomial can be evaluated by [7, Theorem 5.48].
Then, by Lemma 2, we can obtain the desired result. The second and third identities can
be similarly proved, and we omit the proofs here. □
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Abstract

For a Boolean function f represented in algebraic normal form (i.e. as a multi-
variate polynomial function over F2) we consider the density of monomials of degree
k in f , for each degree k, i.e. the number of monomials of degree k that appear in
f , normalized by the total number of possible monomials of degree k. We then
average this number over all functions which are affine equivalent to f ; we call the
resulting quantity, denoted by addk(f), the average degree-k monomial density of
f . We defined this quantity in our previous work, and showed it is closely related
to a probabilistic test we introduced for deciding whether deg(f) < k.

In this paper we give lower and upper bounds for addk(f) for polynomials of
any degree d (only the particular case d = k having been dealt with in our previous
work). There are several consequences of these bounds. Firstly, the deg(f) < k
probabilistic test is guaranteed to have high accuracy when the actual degree of
f is not much higher than k. Secondly, it answers negatively the question: does
there exist a function f which has no monomials of a particular degree k (with
k < deg(f)) and, moreover, it still has no monomials of degree k after applying any
affine invertible change of coordinates to f . Thirdly, while the average of addk(f)
over all n-variable functions f of a fixed degree d > k is equal to 0.5, the distribution
of the values is somewhat surprising; when k ≤ n − 10 and n ≥ 20, low values of
addk(f) exist (reaching approximately 1

2d−k ), but there are no values higher than
around 0.5005.

Keywords: Algebraic degree, Moebius transform, probabilistic testing, algebraic thick-
ness

1 Introduction and motivation

A Boolean function f in n variables can be uniquely represented in ANF (algebraic normal
form), i.e. as a polynomial in n variables over F2 (the finite field with 2 elements) of degree
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at most one in each variable. The degree of this polynomial is called the algebraic degree
of f .

The algebraic degree is one of the parameters that measures the nonlinearity of Boolean
functions used in cryptography. These Boolean functions must have high algebraic degree,
otherwise some attacks can be effective; for example, the higher order derivative attacks,
algebraic attacks, cube attacks, and integral attacks. However, the Boolean functions used
in cryptography do not reach the highest degree because trade-offs with other parameters
need to be considered.

We consider, for each degree k, the density of monomials of degree k in f , i.e. the
number of monomials of degree k that appear in f , normalized by the total number of
possible monomials of degree k. We then average this number over all functions which
are affine equivalent to f ; the resulting quantity, denoted by addk(f), will be called the
average degree-k monomial density of f . While the study of this parameter is interesting
in itself, our original motivation comes from its connection to a probabilistic test that
we introduced in previous work. Namely, when a cryptographic Boolean function f on
Fn
2 with a large number of variables is not given explicitly in ANF (e.g. it is given as a

composition of functions, or even as a black box), it may not be feasible to compute its
algebraic degree. The existence of a particular monomial xi1 · · ·xik of degree k in the
ANF of f can be decided by summing the values of f over a vector space generated by
the k vectors of the canonical basis ei1 , . . . , eik (this method is also known as the Moebius
transform). In [5, 6] we proposed the “deg(f) < k” probabilistic test which generalizes
this idea. One sums the values of f over a linear combination of k vectors, and if the
result is zero, we say that f passes this instance of the test, otherwise it fails (we recall the
full details in Section 2); when the k vectors are linearly independent, this is equivalent to
testing the existence of a particular monomial of degree k after applying a random affine
invertible change of variables to f . The number of monomials of degree k is likely to
be high after the change of variables and therefore it would be easier to probabilistically
detect their existence. The probability of failing the test is denoted by dtk(f). In [6], we
proved lower and upper bounds for dtk(f) for the case when the actual degree of f (which
is not known apriori) turns out to be k.

The main result of the present paper is Theorem 5 and its Corollary 6. They give lower
and upper bounds on dtk(f) and addk(f) for a function f of any degree, generalising thus
the existing result from [6] which only covers the case when f has degree k. These bounds
have several consequences. Firstly, when the actual degree of f is not much higher than
k, the deg(f) < k probabilistic test is guaranteed to have high accuracy (in the sense
that it has a high probability of reaching the correct conclusion after a small number of
tests). Secondly, it answers negatively the question: does there exist a function f which
has no monomials of a particular degree k (with k < deg(f)) and, moreover, it still has
no monomials of degree k after applying any affine invertible change of coordinates to f .
Thirdly, while the average of addk(f) over all n-variable functions f of a fixed degree d > k
is equal to 0.5, the distribution of the values is somewhat surprising; when k ≤ n − 10
and n ≥ 20, low values of addk(f) exist (reaching approximately 1

2d−k ), but there are no
values higher than around 0.5005.
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2 Definitions and existing results

We denote by F2 the finite field with two elements, represented as {0, 1}, and we denote
by ⊕ addition in F2 as well as in the vector space Fn

2 . Any function f : Fn
2 → F2 can be

represented in its algebraic normal form (ANF), i.e. as a polynomial function given by a
polynomial of degree at most 1 in each variable:

f(x1, . . . , xn) =
⊕

a1,...,an∈F2

ca1,...,anx
a1
1 · · ·xann ,

with ca1,...,an ∈ F2. The degree of this polynomial is called the algebraic degree of f , and
here we will call it simply the degree of f and denote it by deg(f). The coefficients of the
ANF of f can be computed by the following formula (see, for example, [4, Chapter 13,
Theorem 1]) which is sometimes called the Moebius transform:

ca1,...,an =
⊕

x1≤a1,...,xn≤an
f(x1, . . . , xn). (1)

Two n-variable Boolean functions f and g are affine equivalent, denoted by f ∼ g, if
g = f ◦φM,v for some invertible affine function φM,v : Fn

2 → Fn
2 , φM,v(x) =Mx⊕ v, where

M is an n × n nonsingular matrix over F2 and v ∈ Fn
2 is a vector. If f and g are affine

equivalent, then deg(f) = deg(g). We therefore say that the algebraic degree is an affine
invariant.

Definition 1. [6] Let 0 ≤ k ≤ n be integers and let f : Fn
2 → F2 be a function. The

degree-k monomial density of f , denoted by ddk(f), is defined as the number of monomials
of degree k in the ANF of f , divided by

(
n
k

)
(the total number of monomials of degree k

in n variables). In other words, if the ANF of f is f(x) =
⊕

m

cmm, with m ranging over

all monomials in n variables and cm ∈ F2, then

ddk(f) =
| {m : m monomial of degree k and cm ̸= 0} |(

n
k

) . (2)

The average degree-k monomial density of f , denoted by addk(f), is the average (arith-
metic mean) of ddk(g) over all the functions g such that f ∼ g, i.e.

addk(f) =

∑

g∼f
ddk(g)

| {g : g ∼ f} | =

∑

M∈GL(n,F2),v∈Fn
2

ddk(f ◦ φM,v)

2n(2n − 1)(2n − 2) · · · (2n − 2n−1)
. (3)

It was shown in [6, Remark 5] that the two ways of defining addk in equation (3) are
indeed equal.

We recall the proposed deg(f) < k probabilistictest [5, 6]: pick u0, u1, . . . , uk ∈ Fn
2 . If

the equation
⊕

b1,...,bk∈F2

f

((
k⊕

i=1

biui

)
⊕ u0

)
= 0 (4)
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holds, we say that f passes this instance of the test, otherwise it fails. We denoted by
dtk(f) the probability of f failing the deg(f) < k test, taken over all all possible choices
u0, u1, u2, . . . , uk ∈ Fn

2 , i.e.

dtk(f) =

|{(u0, u1, u2, . . . , uk) ∈ (Fn
2 )

k+1 :
⊕

b1,...,bk∈F2

f

((
k⊕

i=1

biui

)
⊕ u0

)
̸= 0}|

2(k+1)n
. (5)

If the degree of f is indeed less than k, then f always passes the deg(f) < k test, i.e.
dtk(f) = 0. We are therefore interested in the values of dtk(f) for the case when f has
degree at least k. A value of dtk(f) which is not very low would mean that after running
the test a reasonably small number of times, we have a good chance of having at least
one fail (namely, a probability of 1 − (1 − dtk(f))

t of at least one fail after t tests), and
therefore decide, correctly, that deg(f) ≥ k.

One can easily check that dtk(f) and addk(f) are affine invariants. Moreover, it is easy
to verify that they do not depend on the terms of f of degree strictly less than k, i.e. if g =
f⊕h with deg(h) < k then dtk(f) = dtk(g). Therefore we are working with the equivalence
relation∼k−1 induced by affine equivalence on the quotient RM(n, n)/RM(k−1, n), where
RM(k, n) denotes the set of polynomials of degree at most k in n variables (also known
as the k-th order Reed-Muller code of length 2n, see [4]). Namely, f ∼k−1 g if there is a
function h such that f ∼ h and deg(g − h) ≤ k − 1 (i.e. g and h coincide if we ignore all
monomials of degree less than k).

It is noted in [6, Remark 3] that if the vectors u1, u2, . . . , uk are linearly dependent,
then any function f passes that particular instance of the deg(f) < k test. Therefore,
in practice there is no need to run the test when they are linearly dependent. However,
there are advantages in defining the probability for arbitrary vectors (one reason being
the similar definition for the BLR linearity test; another reason being that Proposition 3
would not hold otherwise; see [6, Remark 3] for further discussion); the probability of
failing the deg(f) < k test, taken over linearly independent vectors, equals addk(f) and
can be obtained by dividing dtk(f) by the probability of k arbitrary vectors being linearly
independent, see [6, Theorem 8]:

dtk(f) = addk(f)
n∏

i=n−k+1

(
1− 1

2i

)
. (6)

Recall that the discrete derivative of f in a non-zero direction u ∈ Fn
2 is defined as

Duf(x) = f(x ⊕ u) ⊕ f(x). The derivative of order k in directions u1, . . . , uk is defined

as D
(k)
u1,...,ukf = Du1(Du2(. . .Duk

f)). For the deg(f) < k test, the equation (4) can be

rewritten as D
(k)
u1,...,ukf(u0) = 0.

In [6], we proved that if f has actually degree k, the following bounds on dtk(f) hold:

Theorem 2. [6, Theorem 14] Let f be a function of degree k in n variables. Then

0.288788... <
k∏

i=1

(
1− 1

2i

)
≤ dtk(f) ≤

1

2

(
1− 1

2n

)k−1
≤ 0.5, (7)
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where 0.288788... is the q-Pochhammer symbol at (0.5, 0.5,∞). The lower bound is achieved
if and only if f(x1, . . . , xn) is affine equiavalent to x1 . . . xk⊕h(x1, . . . , xn) for a polynomial
h of degree at most k − 1.

We also recall the following basic properties:

Proposition 3. [6, Proposition 10] Let f, g1 : Fn
2 → F2 and g2 : Fm

2 → F2.
(i) If g(x1, . . . , xn, xn+1) = f(x1, . . . , xn), then dtk(g) = dtk(f).
(ii) If g(x1, . . . , xn+m) = g1(x1, . . . , xn) ⊕ g2(xn+1, . . . , xn+m), then dtk(g) = dtk(g1) +
dtk(g2)− 2dtk(g1)dtk(g2).

3 Bounds on dtk(f) and addk(f)

We compute first dtk(f) for the case when the ANF of f has just one monomial:

Proposition 4. Let f(x1, . . . , xn) = x1x2 · · ·xd. For any k with 1 ≤ k ≤ d we have:

dtk(f) =
1

2d−k

d∏

i=d−k+1

(
1− 1

2i

)
.

Proof. We can assume that the number of variables n equals d, see Proposition 3(i). Note
that f(x1, . . . , xd) = 1 if and only if (x1, . . . , xd) = 1 where we denote 1 = (1, 1, . . . , 1).
Consider the deg(f) < k test on f at (u0, u1, . . . , uk) ∈ (Fn

2 )
k+1, which checks whether the

following equation holds:
⊕

b1,...,bk∈F2

f(u0 ⊕
k⊕

i=1

biui) = 0.

This test fails if and only if u1, . . . , uk are linearly independent and 1 ∈ u0⊕⟨u1, . . . , uk⟩. In

other words, there are constants bi ∈ F2 such that 1 = u0⊕
k⊕

i=1

biui. The number of ways to

choose k linearly independent vectors (u1, . . . , uk) ∈ (Fn
2 )

k is (2n−1)(2n−2) · · · (2n−2k−1).
For each of these choices, there are 2k ways to choose u0 such that 1 ∈ u0 ⊕ ⟨u1, . . . , uk⟩;
namely, for each of the 2k elements u ∈ ⟨u1, . . . , uk⟩, we choose u0 = 1⊕ u.

Therefore, by using the definition of dtk, we have:

dtk(f) =
2k(2d − 1)(2d − 2) · · · (2d − 2k−1)

2(k+1)d

=
1

2d−k

d∏

i=d−k+1

(
1− 1

2i

)
.

We now give lower and upper bounds for dtk(f):
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Theorem 5. Let f be a polynomial of degree d in n variables. For any k with 1 ≤ k ≤ d
we have:

1

2d−k

d∏

i=d−k+1

(
1− 1

2i

)
≤ dtk(f) ≤

1

2

(
1− 1

2n

)k−1
.

The lower bound is tight; if f is affine equivalent to x1x2 · · ·xd + g(x1, . . . , xn) for a
polynomial g of degree at most k − 1, then dtk(f) equals the lower bound.

Proof. The proof is by induction on d. For d = 1 we have k = 1, so Theorem 2 completes
the proof of this case.

For the inductive step, we assume the statement is true for any degree less than d and
prove it for degree d.

The deg(f) < k test on f at (u0, u1, . . . , uk) ∈ (Fn
2 )

k+1 checks whether the following
equation holds:

⊕

b1,...,bk∈F2

f(u0 ⊕
t⊕

i=1

bkui) = 0.

When u1 = 0 this equation always holds, regardless of f ; when u1 ̸= 0 the equation above
can be rewritten as

⊕

b2,...,bk∈F2

Du1f(u0 ⊕
k⊕

i=2

biui) = 0,

which is the deg(Du1f) < k − 1 test at (u0, u2, . . . , uk). We have therefore

dtk(f) =
1

2n

∑

u1∈Fn
2 \{0}

dtk−1(Du1f). (8)

For the lower bound, recall first that for any u ∈ Fn
2 \ {0} we have deg(Duf) ≤

deg(f) − 1 (see [2]); u is called a fast point for f if deg(Duf) < deg(f) − 1 ([1]). In [1,
Theorem 3.2], it was shown that, for a function f of degree d in n variables, the vector 0
together with the fast points of f forms a vector space of dimension at most n− d.

By denoting by S the set of non-zero vectors in Fn
2 which are not fast points for f ,

we have therefore |S| ≥ 2n − 2n−d. Since deg(Du1f) = d− 1 for all u1 ∈ S, we can apply
the induction hypothesis to Du1f , obtaining dtk−1(Du1f)) ≥ 1

2d−k

∏d−1
i=d−k+1

(
1− 1

2i

)
. By
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using these results in (8), we have

dtk(f) =
1

2n

∑

u1∈Fn
2 \{0}

dtk−1(Du1f)

≥ 1

2n

∑

u1∈S
dtk−1(Du1f)

≥ |S|
2n

1

2d−k

d−1∏

i=d−k+1

(
1− 1

2i

)

≥ 2n − 2n−d

2n
1

2d−k

d−1∏

i=d−k+1

(
1− 1

2i

)

=
1

2d−k

d∏

i=d−k+1

(
1− 1

2i

)

as required. The fact that the lower bound is achieved with equality when f ∼k−1 x1 · · ·xd
is immediate from Proposition 4.

For the upper bound, since Du1f has degree strictly less than d, we know by the

induction hypothesis that if it has degree at least k−1, then dtk−1(Du1f) ≤ 1
2

(
1− 1

2n

)k−2
.

If it has degree less than k − 1, then dtk−1(Du1f) = 0 < 1
2

(
1− 1

2n

)k−2
. Hence, we have

dtk−1(Du1f) ≤ 1
2

(
1− 1

2n

)k−2
for each of the 2n− 1 values of u1 ∈ Fn

2 \ {0}. Therefore, by
using (8), we obtain dtk(f) ≤ 1

2

(
2n−1
2n

) (
1− 1

2n

)k−2
= 1

2

(
1− 1

2n

)k−1
so the upper bound

holds.

Theorem 5 and (6) also yield bounds for addk(f):

Corollary 6. Let f be a polynomial of degree d in n variables. For any k with 1 ≤ k ≤ d
we have:

1

2d−k

(∏d
i=d−k+1

(
1− 1

2i

)
∏n

i=n−k+1

(
1− 1

2i

)
)
≤ addk(f) ≤

1

2

( (
1− 1

2n

)k−1
∏n

i=n−k+1

(
1− 1

2i

)
)
. (9)

The lower bound is tight; if f is affine equivalent to x1x2 · · ·xd + g(x1, . . . , xn) for some
polynomial g of degree at most k − 1, then addk(f) equals the lower bound.

We will now examine a number of consequences of Theorem 5 and Corollary 6. Firstly,
note that the lower bounds in both cases are non-zero. Therefore:

Corollary 7. Let f be a Boolean function and let k < deg(f). There is at least one
function g which is affine equivalent to f and has at least one monomial of degree k which
appears with non-zero coefficient in the ANF of g.

In other words, Corollary 7 says that even if a function f has no monomials of a certain
degree k < deg(f), it is not possible that all the functions in its affine equivalence class
also have this property.
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Next, we estimate the numerical values of the bounds. We are particularly interested
in functions in at least 20 variables, as for functions in fewer variables the ANF can be
explicitly computed even if the function is given as a black box. For k, we are interested in
values of at most 40, as the values of f at 2k points need to be summed for one deg(g) < k
test, which becomes unfeasible for k > 40.

When n ≥ 20 and 2 ≤ k ≤ 40 we have

0.49998 <
1

2

(
1− 1

2n

)k−1
≤ 0.5.

so we will approximate the upper bound on dtk(f) in Theorem 5 by 0.5.
For the other bounds, estimates for the following quantity will be particularly useful:

P (a, b) =
b∏

i=a

(
1− 1

2i

)

for integers 1 ≤ a ≤ b. (Recall that the q-Pochhammer symbol is defined as (c; q)n =∏n−1
i=0 (1−cqi) with n a positive integer or∞, so P (a, b) = ( 1

2a
; 1
2
)b−a). It is obvious that for

a fixed a, P (a, b) decreases as b increases. When a = 1 as b tends to infinity, this quantity
converges to a limit (namely ( 1

2a
; 1
2
)∞) which is in the interval (0.288788, 0.288789); it

converges fast, for example for b = 20, we are already within this interval and therefore
closer than 10−6 to the limit. Similarly, the values of P (a, b) for small values of a =
1, . . . , 10 and b ≥ 20 are, to 6 decimal places: 0.288788, 0.577576, 0.770102, 0.880116,
0.938791, 0.969074, 0.984456, 0.992208, 0.996099, 0.998048. For larger values of a, the
quantity P (a, b) is close to 1. For example, when a ≥ 11 we have P (a, b) ∈ (0.999, 1), and
when a ≥ 21 we have P (a, b) ∈ (0.999999, 1), for any b ≥ a.

Using the estimates above for P (a, b), the values of the lower bound on dtk(f) from
Theorem 5 are tabulated (to 6 decimal places) in Table 1 for d− k = 0, 1, . . . , 8, with the
assumption d ≥ 20. We also computed, based on this lower bound, the number of tests
t that we would need to run in order to guarantee a probability of at least 0.95 that a
correct decision is reached (i.e. 1 − (1 − dtk(f))

t ≥ 0.95). These numerical values show
that by running the deg(f) < k test 769 times we can say with 0.95 confidence that if the
actual degree of f (which is unknown) is at most k + 8 then the correct conclusion will
be reached.

In Table 1, we also computed the lower and upper bounds for addk(f), again under
the assumption n ≥ d ≥ 20. These bounds were obtained by dividing the lower and
upper bounds of dtk(f) (with the upper bound approximated as 0.5) by P (n − k, n) =
P (n− d− (d− k)). We tabulated the values for d− k = 0, . . . , 8, considering two cases:
n− d = 2 and n− d = 10 (any value of n− d higher than 10 giving results very close to
the ones for n− d = 10).

Let us fix k and d with k < d. When f ranges over all n-variable functions of degree
d, the number of monomails of degree k in the ANF of f has a binomial distribution with

parameters
(
n
k

)
and 0.5; each value i = 0, 1, . . . ,

(
n
k

)
appears with probability

((nk)
i

)
1

2(
n
k)
.

The number of degree-k monomials in f , averaged over all functions f of degree d, equals
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d− k dtk(f) t addk(f) addk(f) addk(f) addk(f)
lower bound lower bound upper bound lower bound upper bound

n− d = 2 n− d = 2 n− d = 10 n− d = 10
0 0.288788 9 0.375000 0.649265 0.289070 0.500489
1 0.288788 9 0.328125 0.568107 0.288929 0.500244
2 0.192525 15 0.205078 0.532600 0.192572 0.500122
3 0.110015 26 0.113525 0.515957 0.110028 0.500061
4 0.058674 50 0.059601 0.507895 0.058678 0.500031
5 0.030284 98 0.030521 0.503927 0.030284 0.500015
6 0.015382 194 0.015442 0.501958 0.015382 0.500008
7 0.007752 385 0.007767 0.500978 0.007752 0.500004
8 0.003891 769 0.003895 0.500489 0.003891 0.500002

Table 1: Bounds for dtk(f) and addk(f) for n ≥ d ≥ 20, and number of tests t for a 0.95
probability of reaching a correct decision

1
2

(
n
k

)
and the standard deviation equals 1

2

√(
n
k

)
. Since we are interested in the case n ≥

20, as long as k > 0, this binomial distribution can be approximated by the normal
distribution, so, for example, 95% of the values of the degree-k density, ddk(f) (which is
the number of degree-k monomials divided by

(
n
k

)
, as defined in Definition 1), will fall

within the interval [0.5− 1√
(nk)
, 0.5 + 1√

(nk)
], i.e. will be very close to 0.5.

If we average ddk(f) within each affine equivalence class (note the classes are not all
of the same size), i.e we compute addk(f), we would intuitively expect that most of the
addk(f) values would be close to 0.5, with possibly a small number of them being much
lower or much higher.

However, what is surprising is that, for most values of k < d < n, Corollary 6 can
be used to show that there exist at least one class where addk(f) is much lower than
0.5, but there are no classes with addk(f) much higher than 0.5. More precisely, from
Table 1 we can see that for functions f in at least n = 30 variables, if the degree d
of f is at most n − 10, then addk(f) can be quite low (keeping in mind that the lower
bound is tight and, for example, for d − k ≤ 6 the lower bound is just under 1

2d−k ), but,
surprisingly, addk(f) cannot be any higher than about 0.5005. Namely, by using the
previous estimates for P (a, b), we have that addk(f) ≤ 0.5/P (n − k, n) < 0.5005 when
n − k ≥ 10 and addk(f) < 0.5000005 when n − k ≥ 20. It is only for functions f where
n, d and k are very close to each other that addk(f) can be significantly higher than 0.5
(with the extreme case of n = d = k, where the density of monomials of degree n for a
function of degree n in n variables is obviously equal to 1 as there is only one monomial
of degree n and the degree is an affine invariant).

We computed the exact values of dtk(f), k = 3, 4, for all the 68431 classes of functions
of degree 4 in 7 variables, under the equivalence ∼2. A representative for each class
was determined by Langevin in [3]. The values of dt4(f) range between 0.307617 and
0.451813. The lower and upper bounds given by Theorem 5 would be 0.307617 and
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0.488373 respectively; so, while the lower bound is achieved, the upper bound is not tight
in this case. Likewise, the values of dt3(f) range between 0.307617 and 0.481934. The
lower and upper bounds given by Theorem 5 would be 0.307617 and 0.492218 respectively;
so, while the lower bound is achieved, the upper bound is not tight in this case.

Using (6), for polynomials of degree 4 in 7 variables, add4(f) ∈ [0.346795, 0.509356]
and add3(f) ∈ [0.325120, 0.516162].

We also considered functions that describe the whole cipher Trivium, Grain-128a, and
SNOW-V. Namely, for each cipher, the inputs are the key and initialisation vector and
the output is the first bit of the key stream. In each case, we ran the deg(f) < k test, for
k = 1, 2, . . . , 10 at least 20 times. Not surprisingly, the test confirmed that the functions
have degree at least 10. The experimental probability of failing the test was within the
interval (0.47-0.52) in each case.

4 Conclusions

We studied addk(f), a parameter describing the density of monomials of degree k in the
Algebraic Normal Form of a Boolean function f , averaged over all functions which are
affine equivalent to f . We obtained lower and upper bounds for addk(f) for polynomials
of any degree d (only the particular case d = k having been dealt with in our previous
work). A first consequence is that the deg(f) < k probabilistic test, introduced by us
in previous work, is guaranteed to have high accuracy when the actual degree of f is
not much higher than k. We also answered negatively the following natural question:
does there exist a function f which has no monomials of a particular degree k (with
k < deg(f)) and, moreover, it still has no monomials of degree k after applying any
affine invertible change of coordinates to f . Finally, we evaluated the bounds numerically
in several typical situations of interest. For example, for functions in at least n ≥ 20
variables, when k ≤ n− 10 and k < deg(f) there are functions with a quite low value for
addk(f) (approximately 1

2d−k ), but, somewhat surprisingly (seen that addk(f) has mean
0.5) there are no functions where addk(f) is higher than around 0.5005.
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is devoted to two new constructions of linear codes with few weights over the ring
Fp + uFp from projective spaces. Moreover, we determine the Lee weight distribu-
tions of these codes by investigating the property of the support of the vectors of
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1 Introduction

Let Fp be the finite field with order p, where p is an odd prime. An [n, k, d] linear code C
over Fp is a k-dimensional subspace of Fn

p with minimum Hamming distance d. The weight
enumerator of C is the polynomial 1+N1x+N2x

2+· · ·+Nnx
n, where Ni denotes the num-

ber of codewords of Hamming weight i in C. The sequence (1, N1, N2, · · · , Nn) is called
the weight distribution of the code C. The weight distribution contains important infor-
mation for estimating the probability of error detection and correction. During the past
decade, much attention has been paid to determining the weight distribution of a code.
Determining the weight distribution of a given code is not an easy task in general. We
call C a t-weight linear code if the number of nonzero Ni in the sequence (N1, N2, . . . , Nn)
is equal to t. Linear codes with few weights have been extensively studied because of their
significantly important role in consumer electronics, data storage system, secret sharing,
authentication codes, association schemes, and strongly regular graphs.

There exists several bounds on the number of codewords in a linear code given the
length n and minimum distance d of the code. It is interesting to construct a linear code
achieving one bound. For an [n, k, d] linear code over Fp, the Griesmer bound is given by

n ≥
k−1∑

i=0

⌈ d
pi
⌉,

where ⌈·⌉ is the ceiling function. This bound was proved by Griesmer ([3]) for the binary
codes and was generalized by Solomon and Stiffler ([15]) for codes over arbitrary finite
filed. A linear code C is optimal if its parameters n, k and d meet the Griesmer bound
[4].

Let Fq denote the finite field with q elements, where q is a power of p. In [2],
Ding and Niederreiter proposed a generic construction of linear codes over Fp. Let
D = {d1, d2, . . . , dn} and Trqp(·) denote the trace function from Fq to Fp. A linear code of
length n over Fp is defined as:

CD = {(Trqp(ad1),Trqp(ad2), . . . ,Trqp(adn)) : a ∈ Fq}. (1)

We call D the defining set of CD. Let R = Fq + uFq with u2 = 0. It is easy to see that
R is a local ring with the maximal ideal ⟨u⟩. Let Rm = Fqm + uFqm with u2 = 0 be an
extension ring of R and let R∗m be the multiplicative group of units of Rm. In [10, 11], the
construction defined by (1) was later generalized to codes over finite rings. A linear code
over R with a defining set K = {d1, d2, . . . , dn} ⊆ R∗m is defined as:

CK = {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) : x ∈ Rm}, (2)

where Tr is the trace function from Rm to R defined by Tr(a+ub) = Trqp(a)+uTrqp(b) for
a+ub ∈ Rm. It is easy to see that CK defined in (2) is an R-submodule of Rm. Using this
construction, some optimal linear codes with few weights over rings have been obtained
by selecting the defining sets (see, for instance [9, 7, 12, 13]).

In recent years, several infinite families of optimal or distance-optimal linear codes
from simplicial complexes or down sets were constructed (see [1, 5, 6, 14, 16, 17, 18]). In
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[8], Luo and Ling presented infinite families of optimal or distance-optimal linear codes
over Fp from projective spaces and investigated the locality of these linear codes. Inspired
by the work in [8, 16], in this paper, we construct two classes of linear codes with few
Lee weights over R = Fp + uFp with u2 = 0 by employing projective spaces. Let VA be
a subspace of Fm

p and PA the corresponding projective space of VA (see Section 2). Let
K1 = VA1 + uPA2 and K2 = PA1 + uVA2 . Based on the construction defined in (2), two
classes of linear codes over R = Fp + uFp are defined as

CK1 = {cx = (⟨x,d⟩R)d∈K1|x ∈ Fm
p + uFm

p }

and

CK2 = {cx = (⟨x,d⟩R)d∈K2|x ∈ Fm
p + uFm

p },
where ⟨x,d⟩R denotes the inner product of two vectors x and d of Rm(see Section 2 for
definition).

The rest of this paper is organized as follows. Some preliminaries and notation are
given in section 2. In Section 3, we determine the Lee weight distributions of linear codes
CK1 and CK2 by investigating the property of the support of the vectors of Fm

p . In Section
4, we use the Gray map to obtain some few-weight optimal linear codes over Fp. In Section
5, we make a conclusion.

2 Preliminaries

Let [m] be the set of all integers from 1 to m. Let V ∗m+1 be the set of all nonzero vectors
in vector space Fm+1

p . For two vectors x = (x1, x2, . . . , xm+1), x
′ = (x′1, x

′
2, . . . , x

′
m+1) in

V ∗m+1, we say that x and x′ are equivalent if there exists a nonzero c ∈ Fp such that
x = cx′. The equivalence class is denoted by [x1 : x2 : · · · : xm+1] and consist of all
nonzero scalar multiples of (x1, x2, . . . , xm+1). Then the set of equivalence classes is the
projective space over Fp with dimension m and is denoted by PG(m,Fp). The elements
of PG(m,Fp) are called points.

Let A be a nonempty subset of [m]. Define an |A|-dimensional subspace of Fm
p as

follows:

VA = {(x1, x2, . . . , xm) : xi ∈ Fp if i ∈ A and xi = 0 if i /∈ A}. (3)

Let PA be the corresponding projective space of VA. In this paper, we always choose
the points of PA whose first nonzero coordinate position is 1 as a vector representing a
equivalence class and express all points of PA as vectors of length m. It is easy to check

that VA\{0} =
⋃

c∈F∗
p
cPA and |PA| = p|A|−1

p−1 . For example, if m = 5 and A = {1, 2, 4},
then

V{1,2,4} = {(x1, x2, 0, x4, 0) : x1, x2, x4 ∈ Fp},
P{1,2,4} = {(1, x2, 0, x4, 0) : x2, x4 ∈ Fp}

⋃
{(0, 1, 0, x4, 0) : x4 ∈ Fp}

⋃
{(0, 0, 0, 1, 0)}.
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Below we let R = Fp + uFp and Rm = Fm
p + uFm

p , where u
2 = 0. The inner product

of vectors a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bm) of Rm is defined by ⟨a,b⟩R =∑m
i=1 aibi. Similarly, for two vectors α = (α1, α2, . . . , αm) ∈ Fm

p and β = (β1, β2, . . . , βm) ∈
Fm
p , we define the inner product of α and β as ⟨α, β⟩F =

∑m
i=1 αiβi.

For any x+ uy ∈ R, x, y ∈ Fp, define the Gray map ϕ from R to F2
p by

ϕ : R→ F2
p, x+ uy 7→ (y, x+ y).

For x = α + uβ ∈ Rm, α ∈ Fm
p and β ∈ Fm

p , the map ϕ can extend naturally to a map
from Rm to F2m

p as follow:

ϕ : Rm → F2m
p ,x = α + uβ 7→ (β, α + β).

Let C be a linear code of length m over R. Denote by wH(α) the Hamming weight of
α ∈ Fm

p . For a codeword c = α+ uβ of C, the Lee weight of c is defined to the Hamming
weight of its Gray image as follows:

wL(c) = wL(α + uβ) = wH(β) + wH(α + β).

The Lee weight enumerator of C of length m is the polynomial 1 + B1z + B2z
2 + · · · +

Bmz
m, where Bi denotes the number of codewords of Lee weight i in C. The sequence

(1, B1, B2, · · · , Bm) is called the Lee weight distribution of the code C.

3 The Lee weight distributions of CK1
and CK2

In this section, we present two classes of linear codes over R from projective spaces and
determine the Lee weight distributions of these codes.

The support of a vector a = (a1, a2, . . . , am) ∈ Fm
p , denoted by Supp(a), is defined by

Supp(a) = {1 ≤ i ≤ m : ai ̸= 0}. For A ⊆ [m] and a ∈ Fm
p , let aA be a vector obtained

from a by puncturing on coordinates in [m]\A. The following three lemmas are crucial
in determining the Lee weight distributions of the codes.

Lemma 1. [8] Let A1 and A2 be two subsets of [m]. Then we have the following.

(i)
|S0 = {a ∈ Fm

p |Supp(a) ∩ A1 = ∅}| = pm−|A1|

and
|S1 = {a ∈ Fm

p |Supp(a) ∩ A1 ̸= ∅}| = pm − pm−|A1|.

(ii)
|S20 = {a ∈ Fm

p |Supp(a) ∩ A1 = ∅, Supp(a) ∩ A2 = ∅}| = pm−|A1∪A2|,

|S21 = {a ∈ Fm
p |Supp(a) ∩ A1 = ∅, Supp(a) ∩ A2 ̸= ∅}| = pm−|A1| − pm−|A1∪A2|,

|S22 = {a ∈ Fm
p |Supp(a) ∩ A1 ̸= ∅, Supp(a) ∩ A2 = ∅}| = pm−|A2| − pm−|A1∪A2|

and

|S23 = {a ∈ Fm
p |Supp(a)∩A1 ̸= ∅, Supp(a)∩A2 ̸= ∅}| = pm−pm−|A1|−pm−|A2|+pm−|A1∪A2|.
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Lemma 2. Let A1 and A2 be two subsets of [m] and let

T0 = {(a,b) ∈ Fm
p × Fm

p |Supp(a) ∩ A2 = ∅, Supp(b) ∩ A1 = ∅, Supp(a+ b) ∩ A1 = ∅},

T1 = {(a,b) ∈ Fm
p × Fm

p |Supp(a) ∩ A2 = ∅, Supp(b) ∩ A1 = ∅, Supp(a+ b) ∩ A1 ̸= ∅},
T2 = {(a,b) ∈ Fm

p × Fm
p |Supp(a) ∩ A2 = ∅, Supp(b) ∩ A1 ̸= ∅, Supp(a+ b) ∩ A1 = ∅}

and

T3 = {(a,b) ∈ Fm
p × Fm

p |Supp(a) ∩ A2 = ∅, Supp(b) ∩ A1 ̸= ∅, Supp(a+ b) ∩ A1 ̸= ∅}.

Then

|T0| = p2m−|A1|−|A1∪A2|, |T1| = |T2| = pm−|A1|(pm−|A2| − pm−|A1∪A2|)

and

|T3| = pm−|A2|(pm − 2pm−|A1|) + p2m−|A1|−|A1∪A2|.

Proof. For a,b ∈ Fm
p , let B be a subset of Supp(a)∩Supp(b) consisting of the coordinates

at which a+ b is nonzero. It can be verified that

Supp(a+ b) =

((
Supp(a) ∪ Supp(b)

)
\
(
Supp(a) ∩ Supp(b)

))
∪B

=
(
Supp(a) ∩ Supp(b)c

)
∪
(
Supp(b) ∩ Supp(a)c

)
∪B, (4)

where Supp(a)c = [m] \ Supp(a) and Supp(b)c = [m] \ Supp(b).
Note that {(a,b) ∈ Fm

p ×Fm
p |Supp(a)∩A2 = ∅,b ∈ Fm

p } = T0∪T1∪T2∪T3. It suffices
to determine the size of T0, T1, T2 by Lemma 1 (i) .

Firstly, we determine the size of T0. By (4), we have

Supp(a+b)∩A1 =
(
Supp(a)∩Supp(b)c∩A1

)
∪
(
Supp(b)∩Supp(a)c∩A1

)
∪(B∩A1) = ∅.

This implies that Supp(a) ∩ Supp(b)c ∩ A1 = ∅. Since Supp(b) ∩ A1 = ∅, we have
Supp(b)c∩A1 = A1. It follows that Supp(a)∩A1 = ∅. That is to say, Supp(a+b)∩A1 = ∅
and Supp(b) ∩ A1 = ∅ if and only if Supp(a) ∩ A1 = ∅ and Supp(b) ∩ A1 = ∅. Hence, T0
can be written as

T0 = {(a,b) ∈ Fm
p × Fm

p |Supp(a) ∩ A2 = ∅, Supp(b) ∩ A1 = ∅, Supp(a) ∩ A1 = ∅}.

By Lemma 1, we know that |T0| = |S0| × |S20| = p2m−|A1|−|A1∪A2|.
Secondly, we determine the size of T1. Note that B ⊆ Supp(b) and Supp(b)∩A1 = ∅.

Then B ∩ A1 = ∅ and Supp(b)c ∩ A1 = A1. It follows from (4) that

Supp(a+ b) ∩ A1 =
(
Supp(a) ∩ Supp(b)c ∩ A1

)
∪
(
Supp(b) ∩ Supp(a)c ∩ A1

)
∪ (B ∩ A1)

= (Supp(a) ∩ A1) ∪ ∅ ∪ ∅ = Supp(a) ∩ A1 ̸= ∅.

Sequences and Their Applications (SETA) 2024 5



G. Xu, H. Xu, G. Luo

This implies that Supp(a+b)∩A1 ̸= ∅ and Supp(b)∩A1 = ∅ if and only if Supp(a)∩A1 ̸= ∅
and Supp(b) ∩ A1 = ∅. Hence, T1 can be written as

T1 = {(a,b) ∈ Fm
p × Fm

p |Supp(a) ∩ A2 = ∅, Supp(b) ∩ A1 = ∅, Supp(a) ∩ A1 ̸= ∅}.

It then follows from Lemma 1 that |T1| = |S0| × |S22| = pm−|A1|(pm−|A2| − pm−|A1∪A2|).
Thirdly, we determine the size of T2. By (4), we know that

Supp(a+b)∩A1 =
(
Supp(a)∩Supp(b)c∩A1

)
∪
(
Supp(b)∩Supp(a)c∩A1

)
∪(B∩A1) = ∅,

which implies that Supp(a) ∩ Supp(b)c ∩ A1 = ∅, Supp(b) ∩ Supp(a)c ∩ A1 = ∅ and
B ∩ A1 = ∅. It is easy to verify that Supp(a) ∩ A1 ⊆ Supp(b), Supp(b) ∩ A1 ⊆ Supp(a)
and B ∩A1 = ∅, which implies that Supp(a)∩A1 = Supp(b)∩A1 ̸= ∅ from the condition
that Supp(b) ∩ A1 ̸= ∅. This together Supp(b) ∩ A2 = ∅ implies that |Supp(b) ∩ A1| =
|Supp(a) ∩ A1| = i, where i = 1, 2, . . . , |A1\A2|. On the other hand, since Supp(a +
b) ∩ A1 = ∅, we have aA1 + bA1 = 0. Once the coordinates of bA1 are determined, the
corresponding coordinates of aA1 are also determined. Note that aA1\(Supp(a)∩A1) = 0 and
bA1\(Supp(b)∩A1) = 0. For each 1 ≤ i ≤ |A1\A2|, if |Supp(b) ∩ A1| = i, then there are

(p− 1)ipm−|A1|
(|A1\A2|

i

)
choices for b and pm−|A1∪A2| choices for a such that the conditions

in T2 are satisfied. Then

|T2| =
|A1\A2|∑

i=1

(|A1\A2|
i

)
(p− 1)ipm−|A1|pm−|A1∪A2| = pm−|A1|(pm−|A2| − pm−|A1∪A2|).

Note that {(a,b) ∈ Fm
p ×Fm

p |Supp(a)∩A2 = ∅,b ∈ Fm
p } = T0∪T1∪T2∪T3. It follows

from Lemma 1 (i) that

|T3| = p2m−|A2| − |T0| − |T1| − |T2| = pm−|A2|(pm − 2pm−|A1|) + p2m−|A1|−|A1∪A2|.

This completes the proof.

Lemma 3. Let A1 and A2 be two subsets of [m] and let

R0 = {(a,b) ∈ Fm
p × Fm

p |Supp(a) ∩ A2 ̸= ∅, Supp(b) ∩ A1 = ∅, Supp(a+ b) ∩ A1 = ∅},
R1 = {(a,b) ∈ Fm

p × Fm
p |Supp(a) ∩ A2 ̸= ∅, Supp(b) ∩ A1 = ∅, Supp(a+ b) ∩ A1 ̸= ∅},

R2 = {(a,b) ∈ Fm
p × Fm

p |Supp(a) ∩ A2 ̸= ∅, Supp(b) ∩ A1 ̸= ∅, Supp(a+ b) ∩ A1 = ∅},
and

R3 = {(a,b) ∈ Fm
p × Fm

p |Supp(a) ∩ A2 ̸= ∅, Supp(b) ∩ A1 ̸= ∅, Supp(a+ b) ∩ A1 ̸= ∅}.
Then

|R0| = pm−|A1|(pm−|A1| − pm−|A1∪A2|),

|R1| = |R2| = pm−|A1|(pm − pm−|A2| − pm−|A1| + pm−|A1∪A2|),

and

|R3| = pm(pm − pm−|A2|)− pm−|A1|(2pm − 2pm−|A2| − pm−|A1| + pm−|A1∪A2|).
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Proof. The proof is similar to that of Lemma 2 and is omitted.

In the following, we always assume that A1 and A2 be two nonempty subsets of [m]. Let
VA1 , VA2 be two subspaces of Fm

p defined in (3). Let PA2 be the corresponding projective
space of VA2 . The following theorem shows that CK1 has at most four Lee weights, where
K1 = VA1 + uPA2 .

Theorem 4. Let A1, A2 ⊆ [m] and K1 = VA1 + uPA2 ⊆ Rm. Then the code CK1 is a code

with length p|A1|(p|A2|−1)
p−1 and size p|A1|+|A1∪A2|. The Lee weight distribution of CK1 is listed

in Table 1, where Ti and Ri are given in Lemmas 2 and 3, i = 0, 1, 2, 3.

Table 1: The Lee weight distribution of CK1 in Theorem 4
Lee weight i Frequency Bi

0 |T0|
p|A1|−1(p|A2| − 1) |T1|+ |T2|
2p|A1|−1(p|A2| − 1) |T3|+ |R3|
p|A1|−1(2p|A2| − 1) |R1|+ |R2|

2p|A1|+|A2|−1 |R0|

Proof. It is clear that |K1| = p|A1|(p|A2|−1)
p−1 , i.e., the length of CK1 is p|A1|(p|A2|−1)

p−1 .
For x = α + uβ ∈ Rm, where α ∈ Fm

p , β ∈ Fm
p , the Lee weight of the codeword cx of

the code CK1 is given by

wL(cx) = wL((⟨x,d⟩R)d∈K1) = wL

(
(⟨α + uβ, d1 + ud2⟩R)d1∈VA1

,d2∈PA2

)

= wL

(
(⟨α, d1⟩F + u(⟨α, d2⟩F + ⟨β, d1⟩F ))d1∈VA1

,d2∈PA2

)

= wH((⟨α, d2⟩F + ⟨β, d1⟩F )d1∈VA1
,d2∈PA2

) + wH((⟨α + β, d1⟩F + ⟨α, d2⟩F )d1∈VA1
,d2∈PA2

)

= |K1| −
1

p

∑

y∈Fp

∑

d1∈VA1

∑

d2∈PA2

ζy(⟨α,d2⟩F+⟨β,d1⟩F )
p

+ |K1| −
1

p

∑

y∈Fp

∑

d1∈VA1

∑

d2∈PA2

ζy(⟨α+β,d1⟩F+⟨α,d2⟩F )
p

= 2p|A1|−1(p|A2| − 1)− 1

p

∑

y∈F∗
p

∑

d2∈PA2

ζy(⟨α,d2⟩F )
p

∑

d1∈VA1

ζy(⟨β,d1⟩F )
p

− 1

p

∑

y∈F∗
p

∑

d2∈PA2

ζy(⟨α,d2⟩F )
p

∑

d1∈VA1

ζy(⟨α+β,d1⟩F )
p , (5)

where ζp is a primitive p-th root of unity. Next we divide the proof into five cases.
Case 1 (Supp(β) ∩ A1 = ∅, Supp(α + β) ∩ A1 = ∅, Supp(α) ∩ A2 = ∅ ): Note that

Supp(β) = Supp(yβ) for any y ∈ F∗p. It is easy to check that
∑

d1∈VA1
ζ
y(⟨β,d1⟩F )
p =
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∑
d1∈VA1

ζ
y(⟨α+β,d1⟩F )
p = p|A1| when Supp(β) ∩ A1 = ∅ and Supp(α + β) ∩ A1 = ∅. In this

case,

wL(cx) = 2p|A1|−1(p|A2| − 1)− 2p|A1|−1
∑

y∈F∗
p

∑

d2∈PA2

ζy(⟨α,d2⟩F )
p

= 2p|A1|−1(p|A2| − 1)− 2p|A1|−1
∑

d′2∈V ∗
A2

ζ⟨α,d
′
2⟩F

p

= 2p|A1|−1(p|A2| − 1)− 2p|A1|−1(p|A2| − 1) = 0

due to Supp(α)∩A2 = ∅ and the fact that VA2\{0} =
⋃

y∈F∗
p
cPA2 . It follows from Lemma

2 that the number of x with wL(cx) = 0 is |T0|.
Case 2 (Supp(β) ∩ A1 = ∅, Supp(α + β) ∩ A1 = ∅, Supp(α) ∩ A2 ̸= ∅ ): Similarly,

∑

d1∈VA1

ζy(⟨β,d1⟩F )
p =

∑

d1∈VA1

ζy(⟨α+β,d1⟩F )
p = p|A1|

when Supp(β) ∩ A1 = ∅ and Supp(α + β) ∩ A1 = ∅. In this case, by (5), we have
wL(cx) = 2p|A1|+|A2|−1 when Supp(α)∩A2 ̸= ∅. It follows from Lemma 3 that the number
of x with wL(cx) = 2p|A1|+|A2|−1 is |R0|.

Case 3 (Supp(β)∩A1 = ∅, Supp(α+β)∩A1 ̸= ∅, Supp(α)∩A2 = ∅ ) or (Supp(β)∩A1 ̸=
∅, Supp(α + β) ∩ A1 = ∅, Supp(α) ∩ A2 = ∅ ): Note that

∑

d1∈VA1

ζy(⟨β,d1⟩F )
p = 0 or

∑

d1∈VA1

ζy(⟨α+β,d1⟩F )
p = p|A1|

when Supp(β) ∩ A1 ̸= ∅ or Supp(α + β) ∩ A1 ̸= ∅. In this case, we have wL(cx) =
p|A1|−1(p|A2| − 1) when Supp(α) ∩ A2 = ∅ from (5). It follows from Lemma 2 that the
number of x with wL(cx) = p|A1|−1(p|A2| − 1) is |T1|+ |T2|.

Case 4 (Supp(β)∩A1 = ∅, Supp(α+β)∩A1 ̸= ∅, Supp(α)∩A2 ̸= ∅ ) or (Supp(β)∩A1 ̸=
∅, Supp(α + β) ∩ A1 = ∅, Supp(α) ∩ A2 ̸= ∅ ): By a way similar to the one used in the
Case 3, we have wL(cx) = p|A1|−1(2p|A2|−1) when Supp(α)∩A2 ̸= ∅ from (5). By Lemma
3, the number of x with wL(cx) = p|A1|−1(2p|A2| − 1) is |R1|+ |R2|.

Case 5 (Supp(β)∩A1 ̸= ∅, Supp(α+β)∩A1 ̸= ∅, Supp(α)∩A2 = ∅ ) or (Supp(β)∩A1 ̸=
∅, Supp(α + β) ∩ A1 ̸= ∅, Supp(α) ∩ A2 ̸= ∅ ): It is clear that

∑

d1∈VA1

ζy(⟨β,d1⟩F )
p =

∑

d1∈VA1

ζy(⟨α+β,d1⟩F )
p = 0

when Supp(β)∩A1 ̸= ∅ and Supp(α+β)∩A1 ̸= ∅. In this case, wL(cx) = 2p|A1|−1(p|A2|−1)
and the number of x with wL(cx) = 2p|A1|−1(p|A2| − 1) is |T3|+ |R3|.

To determine the dimension of CK1 ,we define a mapping

τ : Rm → CK1 ,x 7→ cx.

It is easy to check that τ is an epimorphism from Rm to CK1 . By the homomorphism
theorem, CK1 is isomorphic to Rm/Kerτ , where Kerτ = {x ∈ CK1|cx = 0}. Hence, the

size of CK1 is p2m

|T0| = p|A1|+|A1∪A2|.
This completes the proof.
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If we choose some special subsets A1,A2 of [m], then CK1 has three or two Lee weights.

Corollary 5. Let A1, A2 ⊆ [m] with A1 ⊂ A2. Then CK1 is a three-Lee-weight code with

length p|A1|(p|A2|−1)
p−1 and size p|A1|+|A2|, and the Lee weight distribution of CK1 is listed in

Table 2, where Ti (i = 0, 3) and Ri (i = 0, 1, 2, 3) are given in Lemmas 2 and 3.

Table 2: The Lee weight distribution of CK1 in Corollary 5
Lee weight i Frequency Bi

0 |T0|
2p|A1|−1(p|A2| − 1) |T3|+ |R3|
p|A1|−1(2p|A2| − 1) |R1|+ |R2|

2p|A1|+|A2|−1 |R0|

Proof. It is easy to check that |T1| = |T2| = pm−|A1|(pm−|A2| − pm−|A1∪A2|) = 0 when
A1 ⊂ A2. Then the conclusion follows from Theorem 4.

The next corollary follows immediately when A1 = A2.

Corollary 6. Let A1 = A2. Then the code CK1 is a two-Lee-weight code with length
p|A1|(p|A1|−1)

p−1 and size p2|A1|, and the Lee weight distribution of CK1 is listed in Table 3,

where Ti (i = 0, 3) and Ri (i = 1, 2, 3) are given in Lemmas 2 and 3.

Table 3: The Lee weight distribution of CK1 in Corollary 6
Lee weight i Frequency Bi

0 |T0|
2p|A1|−1(p|A2| − 1) |T3|+ |R3|
p|A1|−1(2p|A2| − 1) |R1|+ |R2|

In the following theorem, we determine the Lee weight distributions of the code CK2 ,
where K2 = PA1 + uVA2 .

Theorem 7. Let A1, A2 ⊆ [m] and K2 = PA1 +uVA2 ⊆ Rm. Then the code CK2 is a three-

Lee-weight code with length p|A2|(p|A1|−1)
p−1 and size p|A1|+|A1∪A2|. The Lee weight distribution

of CK2 is listed in Table 4, where Ti and Ri are given in Lemmas 2 and 3, i = 0, 1, 2, 3.

Proof. The proof is similar to that of Theorem 4 and is omitted.

Corollary 8. Let A1, A2 ⊆ [m] with A1 ⊆ A2. Then CK2 is a two-Lee-weight code with

length p|A2|(p|A1|−1)
p−1 and size p|A1|+|A2|. Moreover, the Lee weight distribution of CK2 is listed

in Table 5, where Ti (i = 0, 3) and Ri (i = 0, 1, 2, 3) are given in Lemmas 2 and 3.
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Table 4: The Lee weight distribution of CK2 in Theorem 7
Lee weight i Frequency Bi

0 |T0|
p|A1|+|A2|−1 |T1|+ |T2|

2p|A2|−1(p|A1| − 1) |R0|+ |R1|+ |R2|+ |R3|
2p|A1|+|A2|−1 |T3|

Table 5: The Lee weight distribution of CK2 in Corollary 8
Lee weight i Frequency Bi

0 |T0|
2p|A2|−1(p|A1| − 1) |R0|+ |R1|+ |R2|+ |R3|

2p|A1|+|A2|−1 |T3|

4 Some optimal linear codes from the image of the codes CK1

and CK2
under Gray map

In this section, we show that the image of the codes CK1 and CK2 under Gray map have
few weights over Fp and obtain some optimal codes in some case.

Theorem 9. Let the symbols be the same as those in Corollary 5. Then ϕ(CK1) is a three-

weight code over Fp with parameters [2p
|A1|(p|A2|−1)

p−1 , |A1|+ |A2|, 2p|A1|−1(p|A2| − 1)] and the
weight enumerator

1 +
|T3|+ |R3|
|T0|

z2p
|A1|−1(p|A2|−1) +

|R1|+ |R2|
T0

zp
|A1|−1(2p|A2|−1) +

|R0|
|T0|

z2p
|A1|+|A2|−1

,

where Ti (i = 0, 3) and Ri (i = 0, 1, 2, 3) are given in Lemmas 2 and 3. Furthermore,
ϕ(CK1) is optimal with respect to the Griesmer bound.

Proof. By the Gray map, we can get the weight distribution of ϕ(CK1) from the Lee weight
distribution of CK1 in Corollary 5. We now show that ϕ(CK1) is optimal with respect to the

Griesmer bound. Note that ϕ(CK1) is a p-ary code with parameters [2p
|A1|(p|A2|−1)

p−1 , |A1| +
|A2|, 2p|A1|−1(p|A2| − 1)]. Then we have

|A1|+|A2|−1∑

i=0

⌈
2p|A1|−1(p|A2| − 1)

pi

⌉

=

|A1|−1∑

i=0

⌈
2p|A1|−1(p|A2| − 1)

pi

⌉
+

|A1|+|A2|−1∑

i=|A1|

⌈
2p|A1|−1(p|A2| − 1)

pi

⌉

= 2p|A1|−1(p|A2| − 1) + 2p|A1|−2(p|A2| − 1) + · · ·+ 2(p|A2| − 1) + 2p|A2|−1 + 2p|A2|−2 + · · ·+ 2

= 2
p|A1| − 1

p− 1
(p|A2| − 1) + 2

p|A2| − 1

p− 1
= 2p|A1|(

p|A2| − 1

p− 1
).

Hence, ϕ(CK1) is optimal with respect to the Griesmer bound.
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Corollary 10. Let the symbols be the same as those in Corollary 6. Then ϕ(CK1) is a

two-weight code over Fp with parameters [2p
|A1|(p|A1|−1)

p−1 , 2|A1|, 2p|A1|−1(p|A1| − 1)] and the
weight enumerator

1 +
|T3|+ |R3|
|T0|

z2p
|A1|−1(p|A1|−1) +

|R1|+ |R2|
|T0|

zp
|A1|−1(2p|A1|−1),

where Ti (i = 0, 3) and Ri (i = 1, 2, 3) are given in Lemmas 2 and 3. Furthermore, ϕ(CK1)
is optimal with respect to the Griesmer bound.

By the Gray map, we obtain the following class of two-weight optimal linear codes
over Fp .

Theorem 11. Let the symbols be the same as those in Corollary 8. Then ϕ(CK2) is a

two-weight linear code over Fp with parameters [2p
|A2|(p|A1|−1)

p−1 , |A1|+|A2|, 2p|A2|−1(p|A1|−1)]
and the weight enumerator

1 +
|R0|+ |R1|+ |R2|+ |R3|

|T0|
z2p

|A2|−1(p|A1|−1) +
|T3|
|T0|

z2p
|A1|+|A2|−1

,

where Ti (i = 0, 3) and Ri (i = 0, 1, 2, 3) are given in Lemmas 2 and 3. Furthermore,
ϕ(CK2) is optimal with respect to the Griesmer bound.

Remark 12. (i) It should be noted that these two codes in Corollary 10 and Theorem 11
have different weight distribution. Hence, they are inequivalent to each other even if they
have the same parameters when A1 = A2. (ii) The parameters and weight distributions
of our optimal codes are closely related to subsets A1 and A2 of [m]. It is believed
that our construction can produce some optimal codes with flexible and new parameters.
Furthermore, we did not find optimal codes equivalent to our optimal linear codes in these
references [6, 9, 7, 11, 14, 18].

5 Concluding remarks

In this paper, we presented two classes of linear codes CK1 and CK2 over Fp + uFp from
projective spaces, where K1 = VA1 + uPA2 and K2 = PA1 + uVA2 . By investigating the
property of the vectors of Fm

p , we determined the Lee weight distribution of these linear
codes. We obtained some p-ary optimal linear codes from the Gray image of the codes
CK1 and CK2 .
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Abstract

In this preliminary work, we study the construction of filtering modified de Bruijn
sequence generators and the linear complexity/span of filtering modified de Bruijn
sequences. We study two filtering generator constructions consisting of an NLFSR
that generates a modified de Bruijn sequence and a filtering function. In our first
construction, the filtering function is based on an LFSR that can be selected so that
the filtering sequence can have a chosen attainable linear complexity. Moreover, for
a proper choice of an LFSR feedback, the filtering sequence can be another modified
de Bruijn sequence with a minimum linear complexity. For our second filtering
generator, we present some properties of the filtering functions and experimentally
study the filtering functions and the linear span of corresponding filtering modified
de Bruijn sequences. Our results show that the filtering function does not always
guarantee the high linear complexity of a filtering sequence even when the modified
de Bruijn sequence generated by the NLFSR has an optimal linear complexity.

1 Introduction

Pseudorandom sequence or number generators (PRSGs/PRNGs) are at the heart of mod-
ern stream cipher constructions (e.g., Grain [16], Trivium [6], SNOW-3/V [8], and ZUC
[33]). Feedback shift registers (FSRs) provide an efficient mechanism to generate pseu-
dorandom sequences. There are two types of FSRs, namely linear feedback shift register
(LFSR) and nonlinear feedback shift register (NLFSR). The preferred randomness prop-
erties of a pseudorandom sequence are long period, balance, equal distribution of tuples,
2-level autocorrelation, low crosscorrelation and high linear span [4, 13, 30]. Well-known
binary sequences are maximum length sequences (in short, m-sequences), de Bruijn se-
quences and modified de Bruijn sequences. De Bruijn and modified de Bruijn sequences
have known randomness properties such as long period, balancedness, ideal tuple distri-
bution and high linear complexity [25, 26, 27, 3], and can also be generated by NLFSRs
with a minimal storage/length.
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A binary de Bruijn sequence is a sequence of period 2n where each n-tuple occurs
exactly once in one period of the sequence. A modified de Bruijn sequence is a pseu-
dorandom sequence with period 2n − 1 where each nonzero n-tuple occurs exactly once
in one period of the sequence. A modified de Bruijn sequence is also called a span n
sequence. m-sequences are a class of span n sequences that can be generated by LFSRs.
We interchangeably use the terms modified de Bruijn sequence and span n sequence. The
total number of binary de Bruijn sequences of period 2n (also modified de Bruijn of period
2n − 1) is 22n−1−n [5].

There is a one-to-one correspondence between a de Bruijn sequence and a modified
de Bruijn sequence, which is as follows. A span n sequence can be constructed from a de
Bruijn sequence by removing one zero from the run of zeros of length n, and similarly, a
de Bruijn sequence can be formed from a span n sequence by adding one zero to the run
of zeros of length n−1. From a security point of view, the linear span or linear complexity
is an unpredictability property of a sequence. However, the stability of the linear span is
crucial. As mentioned in [14], by adding one zero to the run of zeros of length n − 1 to
an m-sequence, the linear span of the resultant de Bruijn sequence becomes high, which
varies between 2n−1+n and 2n−1. But, after removing any one zero from the run of zeros
of length n from the resultant de Bruijn sequence, it becomes an m-sequence or span n
sequence with linear span n. This example suggests to study the linear span property of a
modified de Bruijn sequence, instead of de Bruijn sequences, for their use in cryptographic
applications such as designing stream ciphers and PRNGs.

There is a large volume of works in the literature that broadly focus on (i) searching
deBruijn sequences and modified de Bruijn sequences by an exhaustive search, e.g., in
[20, 7, 31]; (ii) constructions of de Bruijn sequences and modified de Bruijn sequences,
for example, by joining two or more cycles using conjugates, e.g., in [10, 29, 17, 18, 28,
19, 23, 1]; and (iii) studying statistical and randomness properties such as linear span of
de Bruijn sequences and modified de Bruijn sequences, e.g., in [3, 9, 23, 25, 26, 11]. Till
today, except for the m-sequences, the linear span n distribution of NLFSR generated
span n sequences is unknown. The works in [22, 21] study the constructions of filtering
de Bruijn generators with proven tuple distribution properties.

A classical filtering generator consists of an LFSR and a filtering function where the
filtering function is chosen to improve the security properties of the filtering sequence or
keystream, including the linear span. For an LFSR-based filtering generator, an upper
bound of the linear span of the filtering sequence is proved [32]. For LFSR-based filter-
ing generators, existing literature has focused on improving the security of the filtering
sequences with a suitable cryptographic filtering function with properties such as high
algebraic degree, algebraic immunity and nonlinearity.

An intuitive methodology to design a secure PRNG or stream cipher is to choose all
components with best cryptographic properties. When constructing a PRNG or stream
cipher using an NLFSR, although a modified de Bruijn sequence could have a large linear
span, it cannot be directly used as a keystream generator, otherwise, the internal state
will be output. So a filter function or a finite state machine function needs to be employed
to the internal state and the keystream will be the output of this function. In this way,
the internal state is masked.
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In this work, we consider a generalized filtering generator in which we replace the
LFSR by an NLFSR generating a modified de Bruijn sequence and require the filtering
sequence to be a modified de Bruijn sequence. We call such generator a modified de Bruijn
or span n generator. As various randomness properties such as long period, balanceness,
and equal distribution of tuples in a modified de Bruijn sequence are inherently offered,
our focus is to study the linear span of a filtering modified de Bruijn generator. We ask
the following question:

When the linear span of the underlying modified de Bruijn sequence generated by an
NLFSR is high, can the filtering function always preserve the high linear span of the

filtering sequence?

Unfortunately, our study shows that it is possible that the linear span of filtered
modified de Bruijn (MDB) sequences could be dropped, even dropped to the minimum
linear span n, i.e., the output filtered modified de Bruijn sequence could be an m-sequence
with linear span n. As mentioned above, the main motivation behind studying this
question that the filtering functions used an NLFSR-based filtering generator are well-
chosen to meet cryptographic requirements.

We present two constructions of filtering modified de Bruijn sequence generators con-
sisting of an NLFSR that generates a modified de Bruijn sequence and a filtering function.
For our first construction, we consider an LFSR as a filter function that is chosen in such
a way that the filtering sequence can have a chosen attainable linear span. We show an-
other construction of an LFSR for which the output filtering sequence is also a modified de
Bruijn sequence with the minimum linear span (i.e., an m-sequence). Our second filtering
modified de Bruijn generator consists of an NLFSR and a nonlinear filtering function.
We experimentally study the filtering functions and the linear span of filtering modified
de Bruijn sequences. Our results show that there exist nonlinear filtering functions that
could drop the linear span of the filtering modified de Bruijn sequences.

2 Basic concepts and properties of binary modified de Bruijn
sequences

In this section, we first define some notations, basic definitions and properties of de Bruijn
or modified de Bruijn n sequences.

Notations. We will use the following notations throughout the paper.

• F2 = {0, 1} is the Galois field with two elements.

• F2n is a finite field of size 2n defined by a primitive element α that is the root of the
primitive polynomial p(x) =

∑n−1
i=0 cix

n−1 + xn, ci ∈ F2.

• trm1 (x) = x+ x2 + x2
2
+ · · ·x2m−1 is the trace function from F2m to F2.

• ZN = {0, 1, . . . , N − 1} denotes the residue ring modulo N

• Fn2 = {(x0, · · · , xn−1) |xi ∈ F2}
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2.1 Nonlinear feedback shift register sequences

Let f(x0, · · · , xn−1) be a feedback function defined from Fn2 to F2. Let s = {si}, si ∈ F2

be a binary sequence generated by f as

sn+i = f(si, si+1, · · · , si+n−1), i = 0, 1, 2, · · · .

Figure 1 shows a block diagram of the feedback shift register sequence generation. If
f is a linear function, then s is referred to as a linear feedback shift register (LFSR)
sequence, otherwise, it is called a nonlinear feedback shift register (NLFSR) sequence.
The sequence s is periodic if and only if the feedback function has the following form
f(x0, · · · , xn−1) = x0 + g(x1, · · · , xn−1) where g is defined from Fn−12 to F2 [12]. In
this work, we consider only periodic sequences of period 2n − 1 or 2n. The randomness
properties of LFSR sequences are well-understood, see Golomb and Gong’s book [13].

sisi+n−1

f(x0, x1, x2, · · · , xn−1)

· · ·

Figure 1: A diagram of an n-stage feeback shift register sequence generation.

Definition 1 (De Bruijn sequence). An NLFSR sequence s = {si} over F2 is called a
de Bruijn (DB) sequence of order or stage n if the period of s is 2n where every n-tuple
occurs exactly once in one period.

Definition 2 (Modified de Bruijn or span n sequence). An NLFSR sequence s = {si}
over F2 is called a modified de Bruijn or span n sequence of order n if the period of s is
2n − 1 where every nonzero n-tuple occurs exactly once in one period.

The linear span or linear complexity of a sequence is the length of the shortest LFSR
that produces the sequence. We also use these two terms interchangeably. The Berlekamp-
Massey algorithm can be used to compute the shortest LFSR given a sequence [24].

Property 3. The linear span of a de Bruijn sequence, denoted as LSdb, is bounded by
2n−1 + n ≤ LSdb ≤ 2n − 1 [3]. On the other hand, the linear span of a span n sequence,
denoted as LSs, is bounded by n ≤ LSs ≤ 2n − 2 [25].

From this property, we call that a span n sequence has the optimal linear span if its
linear span is equal to 2n − 2.

2.2 Basic properties of binary modified de Bruijn sequences

Sequence and function representations. As our focus is on span n sequences, we
recall some properties, more specifically, the trace representation of sequences with period
2n − 1 in the following lemma.
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Lemma 4. [13] For a binary sequence u = (u0, · · · , u2n−2) of period 2n − 1, it has the
following trace representation:

f(x) =
∑

r∈I
Trnr

1 (γrx
r), γr ∈ F2nr , with ui = f(αi), 0 ≤ i < 2n − 2 (1)

where α is a primitive element in F2n, I is the set consisting of all coset leaders modulo
2n − 1 and Trnr

1 (x) = x+ x2 + · · ·+ x2
nr−1 where nr |n.

Theorem 5. (Sequence version) For any binary sequence of period 2n− 1 generated by a
nonlinear feedback shift register of n stages, say {ai}, with linear span > n, there exists a
filtering function h(x0, · · · , xn−1) such that

zi = h(ai, ai+1, · · · , ai+n−1), i = 0, 1, · · · , 2n − 2

which is a sequence generated by an n-stage LFSR. In other words, the filtering sequence
{zi} has linear span n, which is the minimum of the linear span of a binary sequence with
period 2n − 1.

This result is rather surprising at the first glance, since intuitively, we may consider
that linear span of filtering sequences should not be decreased. However, the result is
contrary. It can decrease to the minimum value of any binary sequence with period
2n − 1.

We can have the function version of Theorem 5.

Theorem 6. (Function version) Let α be a primitive element of F2n, I be the set consisting
of the coset leaders modulo 2n − 1, and f is a mapping from F2n to F2 with the following
univariate polynomial representation

f(x) =
∑

r∈I
Trnr

1 (γrx
r), γr ∈ F2nr , (2)

where at least one of r satisfies nr = n and γr 6= 0 and ai = f(αi), 0 ≤ i ≤ 2n − 2. Then,
there exists a function h from Fn2 to F2 such that

h((f(x), f(αx), · · · , f(αn−1x)) = Tr(βxt), β ∈ F2n .

Discrete Fourier transformation. Let a = {ai} be a binary sequence of period N =
2n − 1. The Discrete Fourier Transform (DFT) of s is defined as

Ai =
N∑

j=0

aiα
−ij, i = 0, 1, · · · , N − 1

where α is the primitive element of F2n . The sequence A = {Ai} is called a spectral
sequence of a which is over F2n . The Inverse Discrete Fourier Transform (IDFT) of
A = {Ai} is defined by

ai =
N∑

j=0

Aiα
ij, i = 0, 1, · · · , N − 1
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where α is the primitive element of F2n . If we write the spectral sequence A as a poly-
nomial A(x) =

∑N−1
j=0 Ajx

j, Aj ∈ F2n , then the original sequence can be written as
ai = A(αi), i = 0, 1, 2, · · · , N − 1. According to Blahut’s theorem [2], the linear span
of a is the number of non-zero terms in the spectral sequence A = {Ai}. The polynomial
A(x) can also be written in terms of the trace function, as shown in Fact 7.

Fact 7 (Trace representation from DFT). [14] The polynomial A(x) can be written as

A(x) =
∑

i∈I
trni

1 (Aix
i)

where i is the cyclotomic coset leaders modulo N , ni|n is the number of elements in the
coset for the cost leader i, and trni

1 (x) is the trace function from F2ni to F2.

3 New Constructions

In this section, we present the constructions of new filtering generators based on a span
n sequence and filtering functions. We study the linear span of the filtering sequences.

3.1 New filtering construction with designated linear complexity

Let s = {si} = (s0, s1, · · · , s2n−2) be a span n sequence of period N = 2n − 1, generated
by an NLFSR with a feedback function f(x0, x1, · · · , xn−1) as follows:

sn+i = f(si, si+1, · · · , si+n−1), i = 0, 1, · · · .

Let Si = (si, si+1, si+2, · · · , si+n−1) be the i-th state of the NLFSR. Suppose q(x) =∑L
i=0 qix

i, qi ∈ F2 be a polynomial of degree L over F2. We construct a sequence v = {vi}
as

vi =
L∑

j=0

qisi+j, i = 0, 1, · · · , N − 1.

When the index (i+ j) exceeds N , a modulo N operation is applied. The construction of
the sequence v can be viewed as applying an LFSR filter with the connection polynomial
q(x) to the span n sequence s. Figure 2 shows a high-level overview of this generator.

In Figure 2, computing vi can be viewed as an expansion-then-compression operation
where the NLFSR expands the state Si to a sequence (si, si+1, si+2, · · · , si+L) of length
L + 1 using the nonlinear feedback function f , and then the LFSR takes the sequence
as an input to its state and compresses it to a single bit vi, which is the LFSR feedback
computation. One can also view the process of computing the filtering sequence using an
LFSR of length L as applying a filtering function on the internal state of the NLFSR Si.
Mathematically, this process can be written as

vi = h(Si) = h(si, si+1, si+2, · · · , si+n−1), i = 0, 1, 2, · · · , 2n − 2,

for some Boolean function h in n variables.

Sequences and Their Applications (SETA) 2024 6
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sisi+1si+n−2si+n−1

f(x0, x1, x2, · · · , xn−1)

sisi+1si+L−1si+L si+n−1

qL qL−1 q0q1qn−1

⊕
vi

Figure 2: Construction of a filtering generator with designated linear span

Construction 1 (Filtering sequence with known linear span). A filtering sequence v =
{vi} with a known linear span is constructed as follows:

1. Let the sequence s = {si} be a span n sequence with the linear span T ≤ 2n − 2,
the maximal value (i.e., the optimal case) where si = A(αi) =

∑
i∈I tr

ni
1 (γiα

i) for some
γi ∈ F2n and I ⊂ I0 where I0 is the set of all coset leaders modulo 2n−1 and I consisting
of those with γi 6= 0.

2. Let α be the primitive root of a primitive polynomial t(x) defining F2n . Let tαi(x) be
the minimal polynomial of αi, i ∈ I. We denote

p(x) =
∏

i∈I
tαi(x).

When the sequence s has the optimal linear span, we have

p(x) = p0(x) :=
x2

n−1 + 1

x+ 1
.

3. Select two subsets of coset leaders, denoted by J , J ⊂ I and J0 ⊂ I0 disjoint with I.
We compute u(x) = uJ(x)uJ0(x) where uk(x) =

∏
i∈k tαi(x) where k ∈ {J, J0}. Set

q(x) = p0(x)/u(x) =
∑L

i=0 qix
i, qi ∈ F2 where L = deg(q(x)) = T − deg(u(x)) and

2n−2−deg(u(x)) when s has the optimal linear span, we have u(x) = uJ(x) as J0 = ∅.

4. Compute the filtering sequence v = {vt} as

vi =
L∑

j=0

qjsi+j, i = 0, 1, · · · , 2n − 2.

We now prove the linear span of the filtering sequence in Construction 1 in Theorem 8.
The linear span of v can be proved by counting the non-zero spectral values in the spectral
sequence of v. The proof is similar to that of Theorem 1 in [15].
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Theorem 8. Let v = {vi} be the filtering sequence generated in Construction 1. The
linear span of v is LS(v) = deg(uJ(x)).

Proof. As s is a span n sequence, the minimal polynomial of s for an LFSR is p(x) =∏
i∈I tαi(x). Thus v = {vi}. According to [15], the relation between the spectral sequences

of v and a is Vi = Aiq(α
i). Let K = (I\J) ⊂ I. Then q(αj) = 0 and j = k · 2i, 0 ≤ i ≤

nk − 1 for all coset leaders k ∈ K and nk is the size for the coset leader k, and q(αj) 6= 0
and j = k · 2i, 0 ≤ i ≤ nk − 1 for all coset leaders k ∈ J . As Ai 6= 0, 1 ≤ i ≤ 2n − 2,
therefore Vj = 0 with j = k · 2i, 0 ≤ i ≤ nk − 1 for all coset leaders k ∈ K and Vj 6= 0
with j = k · 2i, 0 ≤ i ≤ nk − 1, k ∈ J . Thus, the linear span of v is LS(v) =

∑
k∈J nk =

deg(uJ(x)). When s has the optimal linear span, we have u(x) = uJ(x).

Remark 9. By using this method, the linear span of the filtered sequence is not increasing.
But it could decrease to the minimum linear of a span n sequence, which is anm-sequence.

When s is a span n sequence, in general, for any polynomial q(x) of degree L, the
filtering sequence v is not a span n sequence. We show a construction below that guar-
antees the filtering sequence is also a span n sequence with the worse linear span. In the
following, we restrict ourselves to the case the span n sequence has the optimal linear
span case in Construction 1 for simplicity.

Construction 2 (Filtering span n sequence construction). The steps to construct a
filtering sequence that is also a span n sequence are as follows:

1. In Construction 1, select a coset leader r ∈ I with gcd(r, 2n−1). Set q(x) = p(x)/tαr(x) =∑L
i=0 qix

i, qi ∈ F2 where L = deg(q(x)) = 2n − 2− n.

2. Compute the filtering sequence v = {vt} as

vi =
L∑

j=0

qjsi+j, i = 0, 1, · · · , 2n − 2.

The filtering sequence v = {vi} is an m-sequence that can be generated by tαr(x).

Proposition 10. The number of different LFSR filtering polynomials q(x) for which the
sequence v in Construction 2 is an m-sequence, is φ(2n−1)

n
.

Proof. The proof follows from the fact that the number of coset leaders r with coset size
n and gcd(r, 2n − 1) = 1 is φ(2n−1)

n
.

Construction 3 (Computing h). The trace representation of h is computed as follows.

1. The mapping h from Fn2 to F2 is defined as

h(s0, s1, · · · , sn−1)→ v0

h(s1, s2, · · · , sn)→ v1
...

...
h(s2n−2, s0, · · · , sn−2)→ v2n−2
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2. Let α be the primitive root of a primitive polynomial t(x) defining F2n . Apply the DFT
on the above mapping to obtain the trace representation of h (using Fact 7).

We now give an example for this constriction.

Example 1. Let n = 4. Let α be a root of t(x) = x4+x+1 in F24 . Consider the feedback
function f(x0, x1, x2, x3) = x0 + x1 + x2 + x1x2 over F2. The NLFSR corresponding to f
generates a span n sequence s = 111100010110100 of period 15. The trace representation
of s is

A(x) = tr(α13x) + tr(x3) + tr(x5) + tr(α10x7).

Let tαi(x) be the minimal polynomial of αi, i ∈ I = {1, 3, 5, 7}. Then, p(x) =∏
i∈I tαi(x) = tα(x)tα3(x)tα5(x)tα7(x). If r = 7, then q(x) = p(x)/tαr(x) =

∑L
i=0 qix

i, qi ∈
F2, L = deg(q(x)) = 10 where

q(x) = (x4 + x+ 1)(x4 + x3 + x2 + x+ 1)(x2 + x+ 1) = x10 + x8 + x5 + x4 + x2 + x+ 1.

The filtering sequence v = {vi} is computed as

vi = si + si+1 + si+2 + si+4 + si+5 + si+8 + si+10, i = 0, 1, · · · , 14.

where v = 001000111101011, which is an m-sequence of period 24 − 1 = 15 for tα7(x) =
1 + x3 + x4. The filtering function h for the LFSR filtering is given by

h(x) = tr(α2x) + tr(α3x3) + tr(α7x7).

Remark 11. According the DFT, we may explicitly obtain the trace representation of
the the filtering h in Construction 3 as follows. Let f(x0, x1, · · · , xn−1) be a feedback
function of a modified de Bruijn sequence s = {si} generated by an FSR. Let Si =
(si, si+1, · · · , si+n−1) be the state of the FSR. Suppose σ is the mapping that uniquely
maps Si to an element of F2n , i.e., σ : Si → αi, i = 0, 1, 2, · · · , 2n − 2. Then the following
function h is given by

h(βi) = tr(σd(Si))
= tr(βαdi),

where σd(Si) = αdi and β = q(αd) and the coset of d has the full size modulo 2n − 1.

Iteratively computing the LFSR filtering sequence. For simplicity, we assume
that the NLFSR generating a span n sequence has the optimal linear span. In Con-
struction 2, the filtering polynomial q(x) is the product of a set of minimal polynomials,
say q(x) = p1(x)p2(x) · · · pm(x). Then, computing v by the LFSR filter with connection
polynomial q(x) is equivalent to computing the filtering sequence iteratively by an LFSR
with connection polynomial pi(x) for i = 1, 2, · · · ,m. That is, computing v = q(L)s is
equivalent to computing vi = pi(L)vi−1, i = 1, 2, · · · ,m where v0 = s, v = vm and L
is the left shift operator. In other words, applying the LFSR filter with the connection
polynomial pi(x) on vi−1 drops the linear span by the degree of pi(x). This way an LFSR
filter can be chosen so that a filtering sequence with the required linear span is achieved.
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3.2 Filtering modified de Bruijn sequence generators

Motivated by the construction of the filtering generator in Section 3.1, we consider another
filtering generator consisting of an NLFSR with a feedback function f(x0, x1, · · · , xn−1)
generating a modified de Bruijn sequence and a Boolean filtering function g in n variables.
The binary modified de Bruijn sequence s = {si} is generated as

si+n = f(si, si+1, · · · , si+n−1), i ≥ 0.

The filtering sequence b = {bi} is generated from s using the filtering function g as

bi = g(si, si+1, · · · , si+n−1), i ≥ 0.

When s has the period 2n − 1, the sequence b also will have the period 2n − 1. We
desire the filtering sequence b = {bi} to be a modified de Bruijn sequence, other than an
m-sequence. We call such generator as a filtering modified de Bruijn or span n generator.
Figure 3 shows a diagram of a filtering span n generator. Example 2 shows the existence
of filtering functions for which the filtering sequence is also a modified de Bruijn sequence,
other than an m-sequence.

g(x0, · · · , ym−1)

sisi+n−1

bi

f(x0, x1, x2, · · · , xn−1)

· · ·

Figure 3: A block diagram of a filtering span n generator

Example 2. Let n = 4. Consider the feedback function f(x0, x1, x2, x3) = x0 + x2 +
x1x2 + x1x3. The following recurrence relation with the initial state (1, 1, 1, 1) generates
the span n sequence a = 111101000101100 with linear span 14:

ai+4 = f(ai, ai+1, ai+2, ai+3) = ai + ai+2 + ai+1ai+2 + ai+1ai+3, i ≥ 0.

The filtering function g(x0, x1, x2, x3) = x0 + x1 + x1x3 on a produces a filtering sequence
b = 101111000110100, which is also a span n sequence and the linear span is 12.

For a suitable choice of a feedback function f and a filtering function g, both sequences
s and b are span n sequences of period 2n − 1. In Proposition 12, we list some (trivial)
filtering functions g that generates a span n sequence when the NLFSR generate a span
n sequence. The proof is straightforward. So, we omit it.
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Proposition 12. Let f be a feedback function in n variables that generates a span n
sequence s = {si} of period 2n−1. Let g be a filtering function used to generate a filtering
span n sequence b = {bi}. The following filtering functions g generates shift equivalent
span n sequences:

• g(x0, x1, · · · , xn−1) = xi, 0 ≤ i ≤ n − 1 produces a span n sequence b with b = Li(a)
where L is the left shift operator.

• g(x0, x1, · · · , xn−1) = f(x0, x1, · · · , xn−1) produces a span n sequence b with b = Ln(a).

4 Experimental Results

In Construction 2, we have seen that some filtering functions constructed from an LFSR
minimal polynomial reduces the linear complexity to the minimum. This inspires us to
understand the linear span of filtering span n sequences for different filtering functions.

Experimental parameters. We perform an experiment to exhaustively search for all
feedback functions that generate span n sequences for n = 4 and 5, and partially for
n = 6. For n = 4, we consider all filtering functions (i.e., 215 Boolean functions), and
for each span n sequence, we generate the filtering sequences. Our experimental results
show that, for each span n sequence s, out of 215 filtering sequences, only 240 filtering
sequences are span n sequences, which include all shift equivalent span n sequences of
period 15. The total number of shift distinct span n sequences are 16. In Table 1, we
present the distribution of the filtering functions that generate (shift distinct) span n
sequences with different linear span values. Similarly, for n = 5, we checked for several
span n sequences that, out of 231 filtering sequences (as there are 231 filtering functions),
only 63488 (= 2048× 31) filtering sequences are span n sequences, which also includes all
shift equivalent span n sequences of period 31. The total number of shift distinct span n
sequences are 2048. Our experimental results in Table 1 also validates Proposition 10 for
Construction 2.

In [25], Mayhew and Golomb (IEEE-IT 1990) studied the linear span distribution of
span n sequences and presented experimental results on the number of span n sequences
for different linear span values for n = 4, 5, and 6. In Table 1, we summarize their results
on the number of span n sequences for an easy reference.

Table 1: Distribution of filtering functions that generate (shift distinct) span n sequences
and their linear span

n = 4 n = 5
Linear span Number of filtering Number of span n [25] Linear span Number of filtering Number of span n [25]

4 2 2 5 6 6
12 4 4 15 10 10
14 10 10 20 4 4

25 306 306
30 1722 1722

We make the following conjecture on the distribution of the filtering functions.
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Conjecture 1. For n ≥ 4, in a filtering modified de Bruijn sequence generator, the
distribution of filtering functions g that map a span n sequence s to another filtering span
n sequence b is the same as the linear span distribution of span n sequences.

5 Conclusion and Future Work

In this work, we studied the construction of filtering modified de Bruijn sequence gen-
erators from the linear complexity point of view. We presented two filtering generator
constructions that can give a chosen linear complexity. We experimentally studied the
filtering functions and the linear span of corresponding filtering modified de Bruijn se-
quences. Our results show that the filtering function does not always preserve the high
linear complexity of the filtering sequence even when the underlying modified de Bruijn
sequence has a high linear complexity. This phenomenon suggests that for cryptographic
applications, the filtering functions, in addition to well-known crypto properties such
as high algebraic degree and algebraic/correlation/spectral immunity, should be chosen
carefully to prevent from dropping the linear complexity drastically.

As a future work, we have been continuing to our work to prove Conjecture 1 and also
study other crypto properties of the filtering functions that give filtering span n sequences.

References

[1] S. R. Blackburn, T. Etzion, and K. G. Paterson. Permutation polynomials, de
bruijn sequences, and linear complexity. Journal of Combinatorial Theory, Series
A, 76(1):55–82, 1996.

[2] R. E. Blahut. Theory and practice of error control codes. Addison-Wesley, 1983.

[3] A. H. Chan, R. A. Games, and E. L. Key. On the complexities of de bruijn sequences.
Journal of Combinatorial Theory, Series A, 33(3):233–246, 1982.

[4] L. Chen and G. Gong. Communication system security. CRC press, 2012.

[5] N. G. De Bruijn. A combinatorial problem. Proceedings of the Section of Sciences of
the Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam, 49(7):758–
764, 1946.

[6] C. De Cannière. Trivium: A stream cipher construction inspired by block cipher
design principles. In S. K. Katsikas, J. López, M. Backes, S. Gritzalis, and B. Pre-
neel, editors, Information Security, pages 171–186, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[7] E. Dubrova. A list of maximum-period nlfsrs, 2012.

[8] P. Ekdahl, T. Johansson, A. Maximov, and J. Yang. A new snow stream cipher
called snow-v. Cryptology ePrint Archive, 2018.

Sequences and Their Applications (SETA) 2024 12



Filtering Modified de Bruijn Sequences with Designated Linear Complexity

[9] T. Etzion. Linear complexity of de bruijn sequences-old and new results. IEEE
Transactions on Information Theory, 45(2):693–698, 1999.

[10] H. Fredricksen. A survey of full length nonlinear shift register cycle algorithms. SIAM
review, 24(2):195–221, 1982.

[11] R. Games and A. Chan. A fast algorithm for determining the complexity of a bi-
nary sequence with period 2n (corresp.). IEEE Transactions on Information Theory,
29(1):144–146, 2006.

[12] S. W. Golomb. Shift Register Sequences. Aegean Park Press, USA, 1981.

[13] S. W. Golomb and G. Gong. Signal design for good correlation: for wireless commu-
nication, cryptography, and radar. Cambridge University Press, 2005.

[14] G. Gong. Randomness and representation of span n sequences. In S. W. Golomb,
G. Gong, T. Helleseth, and H.-Y. Song, editors, Sequences, Subsequences, and Con-
sequences, pages 192–203, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[15] G. Gong, S. Ronjom, T. Helleseth, and H. Hu. Fast discrete fourier spectra attacks on
stream ciphers. IEEE Transactions on Information Theory, 57(8):5555–5565, 2011.

[16] M. Hell, T. Johansson, A. Maximov, and W. Meier. The Grain Family of Stream
Ciphers, pages 179–190. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[17] C. Li, X. Zeng, C. Li, and T. Helleseth. A class of de Bruijn sequences. IEEE
Transactions on Information Theory, 60(12):7955–7969, 2014.

[18] C. Li, X. Zeng, C. Li, T. Helleseth, and M. Li. Construction of de Bruijn sequences
from lfsrs with reducible characteristic polynomials. IEEE Transactions on Informa-
tion Theory, 62(1):610–624, 2015.

[19] K. Mandal and G. Gong. Cryptographically strong de Bruijn sequences with large
periods. In Selected Areas in Cryptography: 19th International Conference, SAC
2012, Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers 19, pages
104–118. Springer, 2013.

[20] K. Mandal and G. Gong. Generating good span n sequences using orthogonal func-
tions in nonlinear feedback shift registers. Open Problems in Mathematics and Com-
putational Science, pages 127–162, 2014.

[21] K. Mandal and G. Gong. On ideal t-tuple distribution of orthogonal functions in fil-
tering de bruijn generators. Advances in Mathematics of Communications, 16(3):597–
619, 2022.

[22] K. Mandal, B. Yang, G. Gong, and M. Aagaard. On ideal t-tuple distribution of
filtering de bruijn sequence generators. Cryptography Commun., 10(4):629–641, jul
2018.

Sequences and Their Applications (SETA) 2024 13



G. Gong and K. Mandal

[23] K. Mandal, B. Yang, G. Gong, and M. Aagaard. Analysis and efficient implementa-
tions of a class of composited de Bruijn sequences. IEEE Transactions on Computers,
69(12):1835–1848, 2020.

[24] J. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on Infor-
mation Theory, 15(1):122–127, 1969.

[25] G. Mayhew and S. Golomb. Linear spans of modified de Bruijn sequences. IEEE
Transactions on Information Theory, 36(5):1166–1167, 1990.

[26] G. L. Mayhew. Weight class distributions of de Bruijn sequences. Discrete Mathe-
matics, 126(1):425–429, 1994.

[27] G. L. Mayhew and S. W. Golomb. Characterizations of generators for modified de
Bruijn sequences. Advances in Applied Mathematics, 13(4):454–461, 1992.

[28] J. Mykkeltveit, M.-K. Siu, and P. Tong. On the cycle structure of some nonlinear
shift register sequences. Information and control, 43(2):202–215, 1979.

[29] J. Mykkeltveit and J. Szmidt. On cross joining de Bruijn sequences. Contemporary
Mathematics, 63:335–346, 2015.

[30] J.-S. No, S. W. Golomb, G. Gong, H.-K. Lee, and P. Gaal. Binary pseudorandom
sequences of period 2n − 1 with ideal autocorrelation. IEEE Transactions on Infor-
mation Theory, 44(2):814–817, 1998.

[31] T. Rachwalik, J. Szmidt, R. Wicik, and J. Zabłocki. Generation of nonlinear feedback
shift registers with special-purpose hardware. In 2012 Military Communications and
Information Systems Conference (MCC), pages 1–4. IEEE, 2012.

[32] R. A. Rueppel. Analysis and design of stream ciphers. Springer Science & Business
Media, 2012.

[33] SAGE. Specification of the 3GPP confidentiality and integrity algorithms 128-eea3
& 128-eia3. document 2: ZUC specification. version 1.6, etsi/sage, 2011., 2011.
https://www.gsma.com/aboutus/wp-content/uploads/2014/12/eea3eia3zucv16.pdf.

Sequences and Their Applications (SETA) 2024 14



New Successor Rules to Efficiently Produce

Exponentially Many Binary de Bruijn Sequences

Zuling Chang
School of Mathematics and Statistics

Zhengzhou University
450001 Zhengzhou, China

zuling chang@zzu.edu.cn

Martianus Frederic Ezerman
School of Physical and Mathematical Sciences

Nanyang Technological University
21 Nanyang Link, Singapore 637371

fredezerman@ntu.edu.sg

Pinhui Ke
Key Laboratory of

Network Security and Cryptology
Fujian Normal University
350117 Fuzhou, China

keph@fjnu.edu.cn

Qiang Wang
School of Mathematics and Statistics

Carleton University
1125 Colonel By Drive

Ottawa ON K1S 5B6, Canada

wang@math.carleton.ca

Abstract

We propose a new general criteria to design successor rules for binary de Bruijn
sequences and show that prior fast algorithms based on successor rules are special
instances. We efficiently generate exponentially many binary de Bruijn sequences
for any given order n. Producing the next bit in each such sequence takes O(n)
memory and O(n) time. We devise computational routines to confirm the claims.

1 Introduction

A 2n-periodic binary sequence is a binary de Bruijn sequence of order n if every binary n-
tuple occurs exactly once within each period. There are 22

n−1−n such sequences [1]. They
appear in many guises, drawing the attention of researchers from varied backgrounds
and interests. Being balanced and having maximum period [2, 3] make these sequences
applicable in coding and communication systems. A subclass with properly calibrated
nonlinearity property can also be useful in cryptography.

Experts have been using tools from diverse branches of mathematics to study their
generations and properties, see, e.g., the surveys in [4] and [5] for further details. Of
enduring interest are methods that excel in three measures: fast, with low memory re-
quirement, and capable of generating a large number of sequences. Known constructions
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come with some trade-offs with respect to these measures. Notable examples include Lem-
pel’s D-Morphism [6], an approach via preference functions described in [7] and in [3],
greedy algorithms with specific preferences, e.g., in [8] and, more recently, in [9], as well
as various fast generation proposals, e.g., those in [10] and in [11].

The most popular construction approach is the cycle joining method (CJM) [3]. It
serves as the foundation of many techniques. A main drawback of the CJM, in its most
general form, is the amount of computation to be done prior to actually generating the
sequences. Given a feedback shift register, one must first determine its cycle structure
before finding the conjugate pairs to build the so-called adjacency graph. Enumerating
the spanning trees comes next. Once these general and involved steps have been properly
done, then generating a sequence, either randomly or based on a predetermined rule, is
very efficient in both time and memory. The main advantage, if carried out in full, is the
large number of output sequences, as illustrated in [12, Table 3].

There are fast algorithms that can be seen as applications of the CJM on specially
chosen conjugate pairs and designated initial states. They often produce a very limited
number of de Bruijn sequences. One can generate a de Bruijn sequence, named the
granddady in [10], in O(n) time and O(n) space per bit. A related de Bruijn sequence,
named the grandmama, was built in [11]. Huang gave another early construction that joins
the cycles of the complementing circulating register (CCR) in [13]. Etzion and Lempel
proposed some algorithms to generate de Bruijn sequences based on the pure cycling
register (PCR) and the pure summing register (PSR) in [14]. Their algorithms generate
a number, exponential in n, of sequences at the expense of higher memory requirement.

Jansen, Franx, and Boekee established a requirement to determine some conjugate
pairs in [15], leading to another fast algorithm. In [16], Sawada, Williams, and Wong
proposed a simple de Bruijn sequence construction, which turns out to be a special case
of the method in [15]. Gabric et al. generalized the last two works to form simple succes-
sor rule frameworks in [17]. Further generalization to k-ary de Bruijn sequences in [18]
and [20] followed. Zhu et al. in [19], building upon the framework in [17], proposed
two efficient generic successor rules based on the properties of the feedback function
f(x0, x1, . . . , xn−1) = x0 + x1 + xn−1 for n ≥ 3. Each rule produces at least 2n−3 binary
de Bruijn sequences.

Our Contributions

We generate de Bruijn sequences by using novel relations and orders on the cycles in
combination with suitable successor rules. We define new classes of successor rules and,
then, prove that they generate, respectively, a number, exponential in n, of de Bruijn
sequences. In particular, the number of generated sequences based on the PCR of order
n is 2(n− 1)(n− 2) . . . 1 = 2 · (n− 1)!. The cost to output the next bit is O(n) time and
O(n) space. Nearly all known successor rules in the literature generate only a handful
of de Bruijn sequences each. The few previously available approaches that can generate
an exponential number of de Bruijn sequences require more space than the ones we are
proposing.

A high level explanation of our approach is as follows. We begin with the set of cycles
produced by any nonsingular feedback shift register. To join all of these cycles into a single

Sequences and Their Applications (SETA) 2024 2



New Successor Rules for Binary de Bruijn Sequences

cycle, i.e., to obtain a binary de Bruijn sequence, one needs a valid successor rule that
assigns a uniquely identified state in one cycle to a uniquely identified state in another
cycle and ensure that all of the cycles are joined in the end. If the cycles are represented
by the vertices of an adjacency graph, then producing a de Bruijn sequence in the CJM
corresponds to finding a spanning tree in the graph. We identify several new relations
and orders on both the cycles and on the states in each cycle. These ensure the existence
of spanning trees in the corresponding adjacency graphs.

We collect preliminary notions and several useful known results in Section 2. Section 3
presents our new general criteria. Section 4 shows how to apply the criteria on the cycles
of the PCR, leading to scores of new successor rules. The last section summarizes our
contributions and lists some future directions.

2 Preliminaries

2.1 Basic Definitions

An n-stage shift register is a circuit of n consecutive storage units, each containing a bit.
The circuit is clock-regulated, shifting the bit in each unit to the next stage as the clock
pulses. A shift register generates a binary code if one adds a feedback loop that outputs
a new bit sn based on the n bits s0 = s0, . . . , sn−1, called an initial state of the register.
The corresponding Boolean feedback function f(x0, . . . , xn−1) outputs sn on input s0. A
feedback shift register (FSR) outputs a binary sequence s = {si} = s0, s1, . . . , sn, . . .
that satisfies the recursive relation sn+ℓ = f(sℓ, sℓ+1, . . . , sℓ+n−1) for ℓ = 0, 1, 2, . . .. For
N ∈ N, if si+N = si for all i ≥ 0, then s is N-periodic or with period N and one writes
s = (s0, s1, s2, . . . , sN−1). The least among all periods of s is called the least period of s.

We say that si = si, si+1, . . . , si+n−1 is the ith state of s. Its predecessor is si−1 while its
successor is si+1. For s ∈ F2, let s̄ := s+ 1 ∈ F2. Extending the definition to any binary
vector or sequence s = s0, s1, . . . , sn−1, . . ., let s := s0, s1, . . . , sn−1, . . .. An arbitrary
state v = v0, v1, . . . , vn−1 of s has v̂ := v0, v1, . . . , vn−1 and ṽ := v0, . . . , vn−2, vn−1 as its
conjugate state and companion state, respectively. Hence, (v, v̂) is a conjugate pair and
(v, ṽ) is a companion pair.

For any FSR, distinct initial states generate distinct sequences. There are 2n dis-
tinct sequences generated from an FSR with feedback function f(x0, x1, . . . , xn−1). They
are periodic if and only if f is nonsingular, i.e., f expressible as f(x0, x1, . . . , xn−1) =
x0 + h(x1, . . . , xn−1), for some Boolean function h(x1, . . . , xn−1) whose domain is Fn−1

2 [3,
p. 116]. All feedback functions in this paper are nonsingular. An FSR is linear or an LFSR
if its feedback function has the form f(x0, x1, . . . , xn−1) = x0+ c1x1+ . . .+ cn−1xn−1, with
ci ∈ F2, and its characteristic polynomial is f(x) = xn + cn−1xn−1 + · · ·+ c1x+ 1 ∈ F2[x].
Otherwise, it is nonlinear or an NLFSR. Further properties of LFSRs are treated in,
e.g., [22] and [23].

For an N -periodic sequence s, the left shift operator L maps (s0, s1, . . . , sN−1) 7→
(s1, s2, . . . , sN−1, s0), with the convention that L0 fixes s. The right shift operator R is
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defined analogously. The set

[s] :=
{
s, Ls, . . . , LN−1s

}
=
{
s, Rs, . . . , RN−1s

}
(1)

is a shift equivalent class. Sequences in the same shift equivalent class correspond to
the same cycle in the state diagram of FSR [22]. We call a periodic sequence in a shift
equivalent class a cycle. If an FSR with feedback function f generates r disjoint cycles
C1, C2, . . . , Cr, then its cycle structure is Ω(f) = {C1, C2, . . . , Cr}. A cycle can also be
viewed as a set of consecutive n-stage states in the corresponding periodic sequence. Since
the cycle are disjoint, we can write Fn

2 = C1∪C2∪. . .∪Cr. When r = 1, the corresponding
FSR is of maximal length and its output is a de Bruijn sequence of order n.

The weight of an N -periodic cycle C, denoted by wt(C), is |{0 ≤ j ≤ N − 1 : cj = 1}|.
Similarly, the weight of a state is the number of 1s in the state. The lexicographically
least N -stage state in any N -periodic cycle is called its necklace. As discussed in, e.g., [24]
and [17], there is a fast algorithm that determines whether or not a state is a necklace in
O(N) time. In fact, one can efficiently sort all distinct states in C. The standard python

implementation is timsort [25]. It was developed by Tim Peters based on McIlroy’s
techniques in [26]. In the worst case, its space and time complexities are O(N) and
O(N logN) respectively. A closely related proposal, by Buss and Knop, is in [27].

Given disjoint cycles C and C ′ in Ω(f) with the property that some state v in C has
its conjugate state v̂ in C ′, interchanging the successors of v and v̂ joins C and C ′ into a
cycle whose feedback function is

f̂ := f(x0, x1, . . . , xn−1) +
n−1∏

i=1

(xi + vi). (2)

Similarly, if the companion states v and ṽ are in two distinct cycles, then interchanging
their predecessors joins the two cycles. If this process can be continued until all cycles
that form Ω(f) merge into a single cycle, then we obtain a de Bruijn sequence. The CJM
is, therefore, predicated upon knowing the cycle structure of Ω(f) and is closely related
to a graph associated to the FSR.

Given an FSR with feedback function f , its adjacency graph Gf , or simply G if f is
clear, is an undirected multigraph whose vertices correspond to the cycles of Ω(f). The
number of edges between two vertices is the number of shared conjugate (or companion)
pairs, with each edge labelled by a specific pair. It is well-known that there is a bijection
between the set of spanning trees of G and the set of all inequivalent de Bruijn sequences
constructible by the CJM on input f .

A pure cycling register (PCR) of order n is an LFSR with feedback function and
characteristic polynomial

fPCR(x0, x1, . . . , xn−1) = x0 and fPCR(x) = xn + 1. (3)

Let ϕ(·) be the Euler totient function. The number of distinct cycles in Ω(fPCR) is known,
e.g., from [3], to be

Zn :=
1

n

∑

d|n
ϕ(d)2

n
d . (4)
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By definition, all states in any given n-periodic cycle CPCR := (c0, c1, . . . , cn−1) ∈ Ω(fPCR)
have the same number of ones.

2.2 Jansen-Franx-Boekee (JFB) Algorithm

In [15], Jansen et al. proposed an algorithm to generate de Bruijn sequences by the CJM.
Suppose that the FSR with a feedback function f(x0, x1, . . . , xn−1) is given. They defined
the cycle representative of any cycle of the FSR to be its lexicographically smallest n-stage
state. If the FSR is the PCR of order n, then it is clear that the cycle representative is its
necklace. Based on the cycle representative, we can impose an order on the cycles. For
arbitrary cycles C and C ′ in Ωf , we say that C≺lexC

′ if and only if the cycle representative
of C is lexicographically less than that of C ′. This lexicographic order defines a total order
on the cycles of the said PCR.

On current state si = si, si+1, . . . , si+n−1, the next state si+1 = si+1, si+2, . . . , si+n

is produced based on the assignment rule in Algorithm 1. The correctness of the JFB
Algorithm rests on the fact that the cycle representative in any cycle C1 which does not
contain the all zero state 0, . . . , 0 is unique. Its companion state is guaranteed to be in
another cycle C2 with C2≺lexC1. This ensures that we have a spanning tree and, hence,
the resulting sequence must be de Bruijn.

Algorithm 1 Jansen-Franx-Boekee (JFB) Algorithm

1: if si = si, 0, . . . , 0 then
2: si+1 ← 0, . . . , 0, si + 1
3: else
4: if si+1, . . . , si+n−1, 0 or si+1, . . . , si+n−1, 1 is a cycle representative then
5: si+1 ← si+1, . . . , si+n−1, f(si, . . . , si+n−1) + 1
6: else
7: si+1 ← si+1, . . . , si+n−1, f(si, . . . , si+n−1)

The main task of keeping track of the cycle representatives in Algorithm 1 may require
a lot of time if the least periods of the cycles are large. For cases where all cycles produced
by a given FSR have small least periods, e.g., in the case of the PCR or the PSR of order
n, the algorithm generates de Bruijn sequences very efficiently. The space complexity is
O(n) and the time complexity lies between O(n) and O(n log n) to output the next bit.

Sawada et al. proposed a simple fast algorithm on the PCR to generate a de Buijn
sequence [16]. Their algorithm is a special case of the JFB Algorithm. Later, in [17],
Gabric and the authors of [16] considered the PCR and the complemented PCR, also
known as the CCR, and proposed several fast algorithms to generate de Bruijn sequences
by ordering the cycles lexicographically according to their respective necklace and co-
necklace. They replace the generating algorithm by some successor rule.

The general thinking behind the approach is as follows. Given an FSR with a feedback
function f(x0, x1, . . . , xn−1), let A label some condition which guarantees that the resulting
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sequence is de Bruijn. For any state c := c0, c1, . . . , cn−1, the successor rule assigns

ρA(c) =

{
f(c) + 1, if c satisfies A,

f(c), otherwise.
(5)

The usual successor of c is c1, . . . , cn−1, f(c0, . . . , cn−1). Every time c satisfies Condition
A, however, its successor is redefined to be c1, . . . , cn−1, f(c0, . . . , cn−1)+1. The last bit of
the successor is the complement of the last bit of the usual successor under the feedback
function f . The basic idea of a successor rule is to determine spanning trees in Gf by
identifying a suitable Condition A. Seen in this light, the rule implements the CJM by
assigning successors to carefully selected states.

3 New General Criteria for Successor Rules

New successor rules for de Bruijn sequences can be established by defining some relations
or orders on the cycles of FSRs with special properties to construct spanning trees in
Gf . This section proves a general criteria that such rules must meet. The criteria will
be applied successfully, in latter sections, to the PCR and the PSR of any order n. The
generality of the criteria allows for further studies to be conducted on the feasibility of
using broader families of FSRs for fast generation of de Bruijn sequences.

We adopt set theoretic definitions and facts from [21]. Given Ωf , we define a binary
relation ≺ on Ωf := {C1, C2, . . . , Cr} as a set of ordered pairs in Ωf . If C ≺ C for every
C ∈ Ωf , then ≺ is said to be reflexive. Let 1 ≤ i, j, k ≤ r. We say that ≺ is transitive
if Ci ≺ Cj and Cj ≺ Ck, together, imply Ci ≺ Ck. It is symmetric if Ci ≺ Cj implies
Cj ≺ Ci and antisymmetric if the validity of both Ci ≺ Cj and Cj ≺ Ci implies Ci = Cj.

The relation ≺ is called a preorder on Ωf if it is reflexive and transitive. It becomes a
partial order if it is an antisymmetric preorder. If ≺ is a partial order with either Ci ≺ Cj

or Cj ≺ Ci, for any Ci and Cj, then it is a total order. A totally ordered set Ωf is called a
chain. Hence, we can now say that ≺lex defined in Subsection 2.2 is a total order on the
corresponding chain Ωf .

Theorem 1. Given an FSR with feedback function f , let ≺ be a transitive relation on
Ω(f) := {C1, C2, . . . , Cr} and let 1 ≤ i, j ≤ r.

1. Let there be a unique cycle C with the property that C ≺ C ′ for any cycle C ′ ̸= C,
i.e., C is the unique smallest cycle in Ω(f). Let ρ be a successor rule that can be
well-defined as follows. If any cycle Ci ̸= C contains a uniquely defined state whose
successor can be assigned by ρ to be a state in a cycle Cj ̸= Ci with Cj ≺ Ci, then
ρ generates a de Bruijn sequence.

2. Let there be a unique cycle C with the property that C ′ ≺ C for any cycle C ′ ̸= C,
i.e., C is the unique largest cycle in Ω(f). Let ρ be a successor rule that can be
well-defined as follows. If any cycle Ci ̸= C contains a uniquely defined state whose
successor can be assigned by ρ to be a state in a cycle Cj ̸= Ci with Ci ≺ Cj, then
ρ generates a de Bruijn sequence.
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Proof. We prove the first case by constructing a rooted tree whose vertices are all of the
cycles in Ω(f). This exhibits a spanning tree in the adjacency graph of the FSR according
to the specified successor rule. The second case can be similarly argued.

Based on the condition set out in the first case, each Ci ̸= C contains a unique state
whose assigned successor under ρ is in Cj ̸= Ci, revealing that Ci and Cj are adjacent.
Since Cj ≺ Ci, we direct the edge from Ci to Cj. It is easy to check that, except for C
whose outdegree is 0, each vertex has outdegree 1. Since ≺ is transitive, there is a unique
path from the vertex to C. We have thus built a spanning tree rooted at C.

There are two tasks to carry out in using Theorem 1. First, one must define a suitable
transitive relation among the cycles to obtain the unique smallest or largest cycle C. The
second task is to determine the unique state in each cycle. A sensible approach is to
designate a state v as the benchmark state in each cycle C. We then uniquely define a
state w in C with respect to the benchmark state. The cycle representative, i.e., the
necklace in the PCR, is the most popular choice for v. In this paper we mainly use the
necklace as the benchmark state in each cycle.

4 Successor Rules from Pure Cycling Registers

In applying the criteria in Theorem 1 to the PCR of any order n, it is good to consider
the positions of the states in each cycle relative to its necklace by ordering the states in
several distinct manners. This general route is chosen since we can check whether or not
a state is a necklace in O(n) time and O(n) space. If the relative position of a state to
the necklace is efficient to pinpoint, then the derived successor rule also runs efficiently.

4.1 The Weight Relation on the Pure Cycling Register

The cycles of the PCR share a nice property. All of the states in any cycle C are shift-
equivalent and share the same weight wt(C). Hence, we can define a weight relation on the
cycles based simply on their respective weights. For cycles Ci ̸= Cj, we say that Ci ≺wt Cj

if and only if wt(Ci) < wt(Cj). The relation ≺wt is not even a preorder, making it differs
qualitatively from the lexicographic order.

Example 2. The PCR of order 6 generates C1 := (001001) and C2 := (000111), with
C1 ≻lex C2, since the necklace 001001 in C1 is lexicographically larger than the necklace
000111 in C2. In the weight relation, C1 ≺wt C2 since wt(C1) = 2 < 3 = wt(C2). □

The following successor rules rely on the weight relation.

Theorem 3. For the PCR of order n, if a successor rule ρ(x0, x1, . . . , xn−1) satisfies one
of the following conditions, then it generates a de Bruijn sequence.

1. For any Ci ̸= (0), the rule ρ exchanges the successor of a uniquely determined state
vi ∈ Ci with a state wj in Cj, where Cj ≺wt Ci.

2. For any Ci ̸= (1), the rule ρ exchanges the successor of a uniquely determined state
vi ∈ Ci with a state wj in Cj, where Ci ≺wt Cj.
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Proof. To prove the first case, note that (0) ≺wt Ci for any Ci ̸= (0) in Ω(fPCR). By the
stated condition, Ci contains a unique state vi such that its conjugate wj := v̂i is in Cj

and wt(Cj) < wt(Ci). The successor rule ρ satisfies the criteria in Theorem 1. The proof
for the second case is similar.

Theorem 3 reduces the task to generate de Bruijn sequences by using ρ to performing
one of two procedures. The first option is to find the uniquely determined state vi ∈
Ci ̸= (0) whose conjugate state v̂i is guaranteed to be in Cj with wt(Cj) < wt(Ci). The
second option is to find the uniquely determined state vi in each Cj ̸= (1) whose conjugate
state v̂i is guaranteed to be in Cj with wt(Cj) > wt(Ci). If, for every Ci, its vi can be
determined quickly, then generating the de Bruijn sequence is efficient. Following the two
cases in Theorem 3, the rule ρ comes in two forms. Let c := c0, c1, . . . , cn−1.

First, let A be

In C := (0, c1, . . . , cn−1), the uniquely determined state v is 0, c1, . . . , cn−1. Its
conjugate v̂ has wt(v̂) > wt(v), which implies v̂ is in C ′ with C ≺wt C

′.

We confirm that the relevant requirement in Theorem 3 is met by

ρA(c) =

{
c0, if 0, c1, . . . , cn−1 satisfies A,
c0, otherwise.

(6)

Second, let B be

In C := (c1, . . . , cn−1, 1), the uniquely determined state v is c1, . . . , cn−1, 1. Its
companion ṽ has wt(ṽ) < wt(v), which means that ṽi is in C

′ with C ′ ≺wt C.

Hence, the successor rule

ρB(c) =

{
c0, if c1, . . . , cn−1, 1 satisfies B,
c0, otherwise,

(7)

fulfills the requirement in Theorem 3.
Based on A and B, valid successor rules can be easily formulated once we manage

to determine a unique state whose first bit is 0, respectively, whose last bit is 1, in each
C ̸= (1), respectively, C ̸= (0).

4.2 Under the Shift Order

Imposing a shift order on the states in a given cycle yields a lot of feasible successor
rules. We call a state whose first entry is 0 a leading zero state or an LZ state in short.
Analogously, a state whose last entry is 1 is said to be an ending one state or an EO state.

The necklace in a given cycle (c0, c1, . . . , cn−1) ̸= (1) must begin with 0, i.e., its necklace
is an LZ state. Here we define a special left shift operator, denoted by Llz. Applied on a
given LZ state v := 0, c1, . . . , cn−1 the operator Llz outputs the first LZ state obtained by
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consecutive left shifts on v. More formally, Llz v := v if c1, . . . , cn−1 = 1, . . . , 1. Otherwise,
let 1 ≤ j < n be the least index such that cj = 0. Then

Llz v := 0, cj+1, . . . , cn−1, 0, c1, . . . , cj−1.

Similarly, the necklace in any C ̸= (0) must end with 1, i.e., it is an EO state. Given
a state u := c1, . . . , cn−1, 1, the special operator Leo fixes u if c1, . . . , cn−1 := 0, . . . , 0.
Otherwise, let 1 ≤ j < n be the least index such that cj = 1. Then

Leo u := cj+1, . . . , cn−1, 1, c1, . . . , cj−1, 1.

In other words, Leo u is the first EO state found upon consecutive left shifts on u.
For these two special operators, the convention is to let

{
L0
lz v = v,

L0
eo u = u,

and

{
Lk
lz v = Lk−1

lz (Llz v),

Lk
eo u = Lk−1

eo (Leo u),
for k > 0.

Proposition 4. With arbitrarily chosen 2 ≤ t ≤ n, we let 1 = k1 < k2 < · · · <
kt = n + 1 and kt−1 < n. For a state c := c0, c1, . . . , cn−1, let v := 0, c1, . . . , cn−1 and
u := c1, . . . , cn−1, 1. The following two successor rules generate de Bruijn sequences of
order n.

ρlz(c) =





c0, if ki ≤ wt(v) < ki+1

for some i and

Lki−1
lz v is a necklace,

c0, otherwise.

ρeo(c) =





c0, if ki ≤ wt(u) < ki+1

for some i and

Lki−1
eo u is a necklace,

c0, otherwise.

(8)

In Proposition 4 we let kt = n + 1 for consistency since wt(v) = n in C = (0) and
wt(u) = n in C = (1). Each of these special cycles has only a single state. The reason
to have kt−1 < n is then clear. The correctness of Proposition 4 comes from Theorem 3
and the fact that the state satisfying the respective conditions in ρlz and ρeo is uniquely
determined in the corresponding cycle.

Proposition 5. Each of the successor rules ρlz in (8) generates 2n−2 de Bruijn sequences
of order n.

Proof. We supply the proof for ρlz in (8), the other case being similar to argue. For each
1 ≤ ℓ < n, there exists at least one cycle of the PCR of order n having ℓ distinct LZ
states. To verify existence, one can, e.g., inspect the cycle (00 . . . 0︸ ︷︷ ︸

ℓ

11 . . . 1︸ ︷︷ ︸
n−ℓ

) for each 1 ≤

ℓ < n. On the other hand, taking all possible 2 ≤ t ≤ n, there are 2n−2 distinct sets
{1 = k1, k2, . . . , kt−1, kt = n + 1} with kt−1 < n. Distinct sets provide distinct successor
rules, producing 2n−2 inequivalent de Bruijn sequences in total.

We are not quite done yet. Here are two more general successor rules whose validity
can be routinely checked.
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Proposition 6. Let k be a nonnegative integer. For a state c := c0, c1, . . . , cn−1, let
v := 0, c1, . . . , cn−1 and u := c1, . . . , cn−1, 1. The following successor rules generate de
Bruijn sequences of order n.

ρ(c) =

{
c0, if L

k
lz v is a necklace,

c0, otherwise.
ρ(c) =

{
c0, if L

k
eo u is a necklace,

c0, otherwise.
(9)

Proposition 7. The number of distinct de Bruijn sequences of order n produced by each
of the rules in (9) is

lcm(1, 2, . . . , n− 1) ≥ (n− 1)

(
n− 2⌊
n−2
2

⌋
)
≥ 2n−2. (10)

Proof. We supply the counting for the successor rule in (9). We know from the proof of
Proposition 5 that, for each 1 ≤ ℓ < n, there exists at least one cycle of the PCR of order
n having ℓ distinct LZ states. For a given k, we construct the system of congruences

{k ≡ ai (mod i) for i ∈ {1, 2, . . . , n− 1}}. (11)

The number of resulting distinct de Bruijn sequences of order n is equal to the number
of solvable systems of congruences in (11). The sequences are distinct because different
nonempty subsets of {a1, . . . , an−1}, whose corresponding systems are solvable, lead to
different choices for the uniquely determined states in the respective cycles. By a general-
ized Chinese Remainder Algorithm in [28, Section 2.4], the number is lcm(1, 2, . . . , n−1).

From [29, Section 2] we get the lower bounds (n− 1)

(
n− 2⌊
n−2
2

⌋
)
≥ 2n−2.

Proposition 6 includes the constructions of de Bruijn sequences from the PCR of order
n in [17] as special cases. Taking k ∈ {0, 1, lcm(1, 2, . . . , n − 1) − 1} in the first rule in
(9), for instance, outputs three sequences, including the PCR4 in [17] and granddaddy.
Using the second rule in (9) with k ∈ {0, 1, lcm(1, 2, . . . , n− 1)− 1} yields sequences that
include PCR3 (J1) in [17] and grandmama.

For the successor rules in Propositions 4 and 6, generating the next bit means checking
if a state is a cycle’s necklace by repeated simple left shifts. This can be done in O(n)
time and O(n) space. We generalize Proposition 6 to define more successor rules.

Theorem 8. Let g(k) : {1, 2, . . . , n} 7→ {0, 1, . . . , k − 1} be an arithmetic function. As
before, for any c := c0, c1, . . . , cn−1, let v := 0, c1, . . . , cn−1 and u := c1, . . . , cn−1, 1. The
following successor rules generate de Bruijn sequences of order n.

ρglz(c) =

{
c0, if L

g(wt(v))
lz v is a necklace,

c0, otherwise.
ρgeo(c) =

{
c0, if L

g(wt(u))
eo u is a necklace,

c0, otherwise.

(12)

For a cycle with 1 ≤ ℓ ≤ n− 1 distinct LZ states, there are ℓ distinct ways to choose
the uniquely determined state according to g(ℓ). The counting for ℓ distinct EO states is
identical. It is then straightforward to confirm that each successor rule in Theorem 8 can
generate (n− 1)! distinct de Bruijn sequences of order n by using all possible g(ℓ).
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5 Conclusions

We have proposed a general design criteria for feasible successor rules. They perform the
cycle joining method to output binary de Bruijn sequences. The focus of our demonstra-
tion is on their efficacy and efficiency when applied to the pure cycling register (PCR) of
any order n ≥ 3. Going beyond the often explored route of relying on the lexicographic
ordering of the cycles, we have shown that many transitive relations can also be used
to order the cycles. We have enumerated the respective output sizes of various specific
successor rules that can be validly defined based on the general criteria. A straightforward
complexity analysis has confirmed that generating the next bit in each resulting sequence
is efficient.

We assert that the criteria we propose here can be applied to all nonsingular FSRs.
If a chosen FSR has cycles with small least periods, then the complexity to produce the
next bit can be kept low. Interested readers are invited to come up with feasible successor
rules for their favourite FSRs. We intend to do the same and to further look into, among
others, the cryptographic properties of the binary de Bruijn sequences produced by more
carefully designed successor rules.
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Abstract

The shrinking generator is a pseudorandom bit generator based on the combi-
nation of two linear feedback shift registers of maximum period. These registers are
synchronized with a common clock and produce binary sequences with good statis-
tical properties. Due to its simplicity and efficient implementation, the shrinking
generator is particularly suitable for stream cipher cryptographic schemes and most
proposed attacks rely on the properties of the generator. Consequently, its anal-
ysis serves as the foundation for other interleave constructions. In our work, we
present a closed formula for the linear complexity of its output. Additionally, we
establish the first bound on its linear complexity profile. Our techniques involve
two-dimensional arrays and their interleave structure, which could prove valuable
for other pseudorandom bit generators.

1 Introduction

Pseudo-Random Number Generators (PRNGs) are deterministic algorithms [10, 21] used
to generate number sequences which appear to be random. They are employed for cryp-
tographic applications such as key and nonce generation, digital signatures, masking pro-
tocols, IoT security, etc.

Linear Feedback Shift Registers (LFSRs) play an important part in the design of
cryptographic PNRGs [15, 23]. Binary sequences generated by maximal-period LFSRs,
whose characteristic polynomial is primitive, are called PN-sequences or m-sequences [13].
These have been extensively used in many and diverse applications such as e-Commerce,
mobile wireless communications, digital broadcasting, or cryptography (stream ciphers)
[3, 20], because they exhibit the largest possible period and present good randomness
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properties such as balancedness, low correlation, excellent run distribution, and so forth.
However, they are easily predictable due to their inherent linearity. In order to ensure their
cryptographic suitability, maintaining at the same time the pseudorandomness properties,
different design techniques are applied: non-linear filtering, combinatorial generators,
clock-controlled generators, or the irregular decimation of PN-sequences, among others.
We focus our attention on the latter.

Irregularly decimating the output sequences of m-sequences generates powerful PN-
RGs [9] i.e. it produces sequences with good cryptographic properties. One of the most
important generators in this family is the shrinking generator (SG) [8], built from two
LFSRs with different lengths. This generator is fast, easy to implement, and generates
good cryptographic sequences, which is appropriated for efficient applications in low-end
devices such as stream cipher cryptosystems [2, 4, 9]. A great family of decimation-based
sequence generators have emerged from the former: the self-shrinking generator [19], the
generalized self-shrinking generator [16], the modified self-shrinking generator [17], and
the t-modified self-shrinking generator [7]. Each of these generators are based on same
principle, with different approaches to avoid certain attacks to the linearity of the con-
struction. We focus on the shrinking generator, because it is the original architecture of
the generators as a starting study that we hope can be extended for the derived families.

The row by row (snake like) folding of a sequences produces arrays which are useful
in single periodic or aperiodic applications. This structure in the shrinking generator was
explored by Cardell et al. [6] in order to characterize the cryptographic related properties.

Our analysis is based on the transformation of sequences into arrays using the Chinese
remainder theorem (CRT). This is equivalent to folding a sequence along the leading
diagonal of an array whose dimensions are relatively prime. The equivalence in this case
between both array construction methods has already been studied and understood [14].
This implies that in the case of a sequence built by the shrinking generator the columns
are cyclic shifts of a shorter m-sequence. This fundamental difference to the row by row
folding is crucial to study the properties of the array.

This paper is structured as follows: Section 2 introduces the necessary background and
presents the main theorem of our study. In Section 3, we provide the proof of the main
result with a detailed and rigorous justification for our theorem. Finally, we finish the
paper with conclusions and future works in Section 4, where we summarize our findings
and suggest potential directions for future research

2 Mathematical Preliminaries and main result

Let N0 = {0, 1, 2, . . .} be the set of nonnegative integers and F2 = {0, 1} the Galois field
of two elements. A binary sequence (si) is a mapping from N0 to F2. It is periodic if there
exists a positive integer T such that si+T = si, for all i ∈ N0.

A linear feedback shift register (LFSR) [13] is an electronic device with L memory
cells (stages) with binary content. At every clock pulse, the binary element of each stage
is shifted to the adjacent one and a new element is computed through the linear feedback
to fill the empty stage (see Figure 1).

Sequences and Their Applications (SETA) 2024 2
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Figure 1: LFSR of length L

si si+1 si+2 · · · si+L−2 si+L−1

c0 c1 c2 · · · cL−2 cL−1

+ + · · · + +

OUTPUT

We present the definition of two security metrics for sequences which rely on LFSRs:
the linear complexity and the linear complexity profile.

Definition 1. Let L be a positive integer and c0, c1, . . . , cL−1 ∈ F2. A binary sequence
s = (si) satisfying

si+L =
L−1∑

j=0

cjsi+j, (1)

for all i ∈ N0 is called an (L-th order) linear recurring sequence (LRS) and the monic
polynomial

C(x) = xL +
L−1∑

j=0

cjx
j ∈ F2[x]

is the characteristic polynomial of the recurrence and we say that the sequence is generated
by C(x). The minimal order of an LRS is called linear complexity and denoted by L(s),
that describes the unique minimal polynomial. This is equivalent to the shortest LFSR
that generates such a sequence.

The linear complexity profile denoted by L(s, N) is the function depending on N that
outputs the smallest order L such that s0, . . . , sN−1 are the first elements of the L-th order
LRS.

In cryptographic applications, the linear complexity must be large and resemble the
expected value of a random sequence, which is approximately half the period, that is,
L(s) ≃ T/2 [22]. It is clear that a low linear complexity implies the sequence is pre-
dictable [5, 12, 18]. However, it fails to capture irregularities in part of the sequence, that
can be detected by the linear complexity profile. The latter is a non-decreasing function
on N and, for a T -periodic sequence s, L(s) = L(s, 2T ).

A linear recurring sequence generated by an LFSR of order L such that its least period
is 2L − 1 is called maximal length sequence or m-sequence. These kind of sequences are
easily generated using the trace function. For F2L , the Galois field of 2L elements, we
consider the trace function:

Tr(x) =
L−1∑

i=0

x2i .
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We recall the following properties for m-sequences, which can be found in [13, Def-
inition 4.6, Corollary 4.6, Property 5.3, Theorem 5.3]. We denote the polynomial rings
F2[x] ⊂ F2[x, y].

Proposition 2. Let (ai) be an m-sequence generated by a polynomial p(x) ∈ F2[x] of
degree L. It satisfies the following statements:

• Its period is T = 2L − 1.

• The number of ones occurring within a period is 2L−1 = (T+1)/2 and the number of
zeros is 2L−1 − 1 = (T−1)/2.

• It has the shift-and-add property, i.e. for any k1, k2 ∈ N0, either ai+k1+ai+k2 = 0 for
every i ∈ N0 or there exists k3 ∈ N0 such that the sum equals ai+k3 for every i ∈ N0.

• For a primitive element α ∈ F2L, there exists k ∈ N0 such that ai = Tr(αi+k) for
every i ∈ N0.

In order to define a shrunken sequence, we consider two m-sequences (ai) and (bi) with
characteristic polynomials p1(x), p2(x) ∈ F2[x] of degrees L1 and L2, with L1 ≤ L2. We
restrict ourselves to the case gcd(L1, L2) = 1, so that the periods 2L1 − 1 and 2L2 − 1
are coprime as well. The shrinking generator is the decimation of (bi) by (ai), i.e. the
subsequence of (bi) that selects only indices for which ai = 1. In other words, ordering
increasingly the set I = {i ∈ N0 | ai = 1}, we obtain a sequence (ij) in N0. The shrinking
generator output is the sequence given by (bij) with ij ∈ I, denoted by s = (sj). It
is called shrunken sequence and its least period is (2L2 − 1)2L1−1. Regarding the linear
complexity, the only known bounds are L22

L1−2 < L(s) ≤ L22
L1−1 [8]. However, those

bounds are not tight and it has been an open problem to calculate it theoretically.
Moreover, Fuster-Sabater and Caballero Gil [11] prove that the minimal polynomial

is of the form (p(x))m, where 2L1−2 < m ≤ 2L1−1 and p(x) is the minimal polynomial of
(bi). The main result of this paper is the following one. The proof is given in Section 3.

Theorem 3. The linear complexity of a shrunken sequence s is

L(s) = L2 · 2L1−1, when 2L1 · (2L1 − 1) < L2.

Under the same assumptions, the linear complexity profile L(s, N) is equal to L(s) if
N > L2 · 2L1.

A two-dimensional array of periods n1 and n2 is a mapping A : N2
0 → F2 satisfying

A(α1 + n1, α2 + n2) = A(α1, α2), for every (α1, α2) ∈ N2
0.

The composition method is able to construct a two-dimensional array from an initial
sequence and a shift sequence, see for example [14]. It starts from an n1-periodic bi-
nary sequence (ei) and a n2-periodic integer sequence (tj), referred as column and shift,
respectively. The resulting array is defined by

A(i, j) = ei−tj . (2)

Sequences and Their Applications (SETA) 2024 4



On the linear complexity of shrunken sequences

If the periods n1 and n2 are coprime, the diagonal sj = A(j mod n1, j mod n2) cov-
ers the whole array by the Chinese Remainder Theorem. This transformation is called
unfolding of an array and the result is the unfolded sequence.

The following result, which is a consequence of [6, Proposition 2], shows that any
shrunken sequence is the unfolding of an array obtained by the composition method.
While the original result applies to the row by row or interleave method, it is possible
to transform from interleave method to the composition method in many cases [14]. We
recall that, for an m-sequence with period 2L1 − 1, the number of ones within a period
is 2L1−1.

Proposition 4 ([6, 14]). Let L1, L2 be coprime positive integers with L1 < L2 and let
(ai), (bi) be m-sequences with (coprime) periods T1 = 2L1 − 1 and T2 = 2L2 − 1. Let
δ ∈ {1, . . . , T2 − 1} such that T1 · δ = 2L1−1 mod T2. Denote by (ij) the sequence of
indices belonging to the set I defined previously, i.e. aij = 1 and define the (2L1−1)-periodic
sequence

tj = δ · ij − j mod T2.

Then, the shrunken sequence is the result of unfolding the array given by the composition
of (bi) and (tj).

Let us recall the definition of linear complexity for two-dimensional arrays [1].

Definition 5. A polynomial C =
∑

(α1,α2)∈S⊂N2
0

cα1,α2x
α1yα2 ∈ F2[x, y] is valid for the two-

dimensional array A when the equation
∑

S

cα1,α2 A(α1 + β1, α2 + β2) = 0 (3)

holds for every β1, β2 ∈ N0. In this case, we also say that A satisfies the two-dimensional
linear recurrence relation given by C. If it holds for specific β1, β2, we say that the equation
is valid at (β1, β2) for A. For the case of periodic two-dimensional arrays, the set of all
valid polynomials forms a zero-dimensional ideal and the number of solutions counting
its multiplicity in the algebraic closure is known as the linear complexity of the array.

We finish this section summarizing some known facts about the linear complexity of
arrays and its relation with that of the corresponding unfolded sequences [1].

Proposition 6. Given A, (ei), and (tj), defined as in Equation (2), the following facts
hold:

1. If a polynomial in F2[x] is valid for A, it is a multiple of the minimal polynomial
of (ei).

2. The minimal polynomial of the unfolded sequence is the smallest-degree polynomial
D(z) such that D(xy) is valid for A.

3. The linear complexity of A equals that of its unfolded sequence.
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Proof. For the first item, suppose that C(x) is valid for A, then
∑

S

cα1A(α1 + β1, β2) = 0.

Taking into account Equation (2)
∑

S

cα1eα1+β1+tβ2
= 0,

which implies that it is a characteristic polynomial of (ei), i.e. it is a multiple of the
minimal polynomial of (ei).

For the second item, the unfolded sequence si = A(i mod n1, i mod n2) for all j ∈
N0. A characteristic polynomial for (si), D(z), satisfies

0 =
L∑

j=0

djsi+j =
L∑

j=0

djA(i+ j mod n1, i+ j mod n2),

which implies that the polynomial D(xy) is valid for A by Equation (3). The last item is
proven in [1] and this finishes the proof.

3 Proof of the main result

We are ready to prove Theorem 3. The shrunken sequence defined by the m-sequences (ai)
and (bi), with minimal polynomials p1(x) and p2(x) of degrees L1 and L2, is, according to
Proposition 4, the unfolding of an array. Namely, of A(i, j) = bi−tj , which is obtained as
the composition of (bi), with period T2 = 2L2 − 1, and a shift sequence (tj), whose period
is τ = 2L1−1.

We will prove that the ideal of valid polynomials for the array is (p2(x), y
τ − 1), from

where the theorem’s first statement follows. On one hand, it is straightforward that
p2(x), y

τ − 1 are valid polynomials.
On other hand, any valid polynomial is in the ideal, note that

(y + 1)τ = yτ − 1 and (y + 1)τ−1 = 1 + y + y2 + · · ·+ yτ−1.

We consider firstly a valid polynomial in F2[x]. By the first item of Proposition 6, it
must be a multiple of p2(x). Suppose that there exists a valid polynomial not in the ideal
above. We can assume that it takes the form

C(x, y) =
τ−1∑

i=0

Ci(x)(y + 1)i (degCi(x) < deg p2(x), ∀i),

with at least one index i for which Ci(x) =
∑

i cix
i is not the zero polynomial. Let n be

the lowest of those indices. Then, we have

(y + 1)τ−1−n C(x, y) = Cn(x)(y + 1)τ−1 +D(x, y)(y + 1)τ ,
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so that Cn(x)(y+1)τ−1 =
∑

i

∑τ−1
j=0 cix

iyj is valid. In particular, for every l = 0, . . . , T2 − 1,
it holds at (l, 0). Fix a primitive element α ∈ F2L2 . According to Proposition 2, there ex-
ists k ∈ N0 such that bi = Tr(αi+k), for every i ∈ N0. Then, for every index l,

0 =

L2−1∑

i=0

τ−1∑

j=0

cibi+l−tj = Tr

(
αk+l

L2−1∑

i=0

ciα
i

τ−1∑

j=0

α−tj

)
= 0.

The power set {αk+l | l = 0, . . . , T2 − 1} equals the whole F ∗
2L2 . Therefore, it must be

(
L2−1∑

i=0

ciα
i

)(
τ−1∑

j=0

α−tj

)
= 0.

Since Cn(x) is not zero, neither is the first factor. Writing T1 = 2L1 − 1 and (ij) and δ as
in Proposition 4, we get

0 =
τ−1∑

j=0

αj−δ·ij =
τ−1∑

j=0

(α′)T1·(j−δ·ij) =
τ−1∑

j=0

(α′)(2·τ−1)·j−τ ·ij

so that α′ is a root of G(x) = x(2τ−1)·τ ∑τ−1
i=0 x(2·τ−1)·j−τ ·ij , where (α′)T1 = α. However, the

polynomial G(x) has degree less than 2 · τ · (2 · τ − 1) but this is a contradiction with the
fact that α′ is a primitive root and its minimal polynomial has degree L2. This completes
the proof of the first statement.

For the other one, for N > L2(2
L1−1), we are going to calculate L(s, N). Take a

linear recurrence that holds for N points of sequence s, then there is a characteristic
polynomial p(z) associated to the linear recurrence. The first N positions of the sequence
s evenly spaced with constant separation in the array A, then at least L2 points in each
column corresponds to the first N elements of the sequence. Due to the fact that each
column is the m-sequence (bi) with p2(x) then A can be reconstructed, therefore p(z) is
a characteristic polynomial for s and deg p(x) ≥ L(s). This finishes the proof.

4 Conclusions and future work

In this paper, we have a obtained the exact value of the linear complexity of shrunken
sequences under a certain condition. We conjecture that this result holds on a more
general settings, due to observation of computer experiments carried on. As far as we
know, this work is also the first one which studies the linear complexity profile of shrunken
sequences and provides an initial bound. Our computational experiments also suggest that
the linear complexity is maximal, even in parts of the sequence, when sufficient number of
terms are taken. This fact limits the applicability of attacks based on the linear structure
of the sequence, given a more stronger security than initially expected.

Further studies on the linear complexity of the generalized sequences are left as an
open problem. The starting point could be to analyse several computational simulations
on the linear complexity and the linear complexity profile.

Sequences and Their Applications (SETA) 2024 7



A. I. Gomez, D. Gómez-Pérez, V. Requena

As a future work, we would like to obtain some improved bounds for these sequences;
and, also to study the linear complexity profile for the other families of decimation-based
sequences generators. Results on this direction may lead to establish a relation between
arrays and these families of sequences, which could help to deepen the understanding of
these generators and obtain stronger results in statistical properties like number of runs,
balancedness, etc.
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Keynote Talk:

Recent Advances in Signal Design for

Integrated Sensing & Communications

Pingzhi Fan

Southwest Jiaotong University, Chengdu, China

Abstract. Integrated Sensing and Communication (ISAC) combines

sensing and communication systems to utilize wireless resources effi-

ciently, realize wide area environment sensing, and even to pursue mutual

benefits. It is anticipated that ISAC would be one of the key enablers of

5G Advanced (5GA) and 6G wireless networks for supporting a variety

of emerging applications. Obviously, transmitting signal design plays an

essential role in ISAC systems. This talk shall provide recent advances

in ISAC signal designs, including coordinated signal design, communica-

tions signal-based design, radar signal-based design, and dedicated dual-

function signal design. In particular, a new concept called low ambiguity

zone (LAZ) and some theoretical bounds, as well as related LAZ signal

designs, shall be presented.
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Sequence Set with Large CZC Ratio

Kai Liu ∗, Qinghai Xu, Xin Meng
School of Information Science and Engineering

Yanshan University
Qinhuangdao, China.

liukai@ysu.edu.cn

Abstract

Cross Z-complementary pairs/sequences (CZCPs/CZCSs) are widely used for
training sequences in spatial modulation (SM) systems and can achieve superior
channel estimation performance in frequency-selective channels, whose aperiodic
correlation sums appear as zero correlation zones at both the front-end and back-
end offsets of the sequences. Nevertheless, the ZCZ length of the binary CZCP is
restricted to half of its length, while the CZCS can result in a larger increase in
ZCZ length, and is suitable for SM systems against larger delay expansion. This
paper proposes a class of optimal CZCS sets (CZCSSs) with flexible ZCZ length by
employing CZCPs and Hadamard products. To improve the parameters of CZCPs,
two novel classes of CZCPs are introduced through concatenation construction. The
construction results yield new parameters and expand the pool of training sequences
available for SM systems.

1 Introduction

Spatial modulation (SM) is a category of MIMO modulation techniques. Multiple trans-
mit antenna (TA) elements are present in an SM system, but only one radio frequency
(RF) chain. Within each time slot, the SM symbol can be divided into two parts: one
part is called the “spatial symbol”, which is responsible for selecting and activating TA
elements, and the other part is called the “constellation symbol”, which is selected from
traditional PSK/QAM constellations and transmitted from active TA elements. “Single
RF chain” of SM in principle doesn’t permit the transmitter to transmit using the pilots
on all TAs simultaneously, so the dense training sequence of conventional MIMO in [13]-
[15] is not applicable to SM systems. For this reason, Liu proposed cross Z-complementary

∗The authors are supported in part by the Natural Science Foundation of Hebei Province under
Grant F2023203066, and in part by the Key Laboratory Project of Hebei Province, China under Grant
202250701010046.



F. Author, P. S. Author, P. T. Author

pairs (CZCPs) that can be applied to SM training sequences [4]. The idea of CZCPs is
derived from Golay complementary pairs (GCPs) [3] and Z-complementary pairs (ZCPs)
[1], which have aperiodic auto-correlation sums (AACSs) for front-end and tail-end ZCZ,
as well as aperiodic cross-correlation sums (ACCSs) for tail-end ZCZ. Liu also pointed
out that the ZCZ length of CZCP cannot exceed N/2, where N is the sequence length.
When the ZCZ length reaches half of the sequence length, it is called a perfect CZCP.
Cross Z-complementary ratio (CZCratio) is defined in [5] as the ratio of ZCZ length Z
to the maximum possible ZCZ width Zmax. When CZCratio = 1, it is referred to as the
optimal CZCP. Multiple CZCPs with different CZCratio are constructed in [4], [5], [8]-[11].
Recently, CZCPs have been expanded to CZCSs[12] and CZCSSs[2].

In the literature, binanry quaternary and q-ary CZCPs have been developed. Adhikary
used the insertion method to indirectly construct a number of binary CZCPs with larger
CZCratio [5]. He also used Barker codes to construct a class of optimal binary CZCPs and
extended the length of binary CZCPs through the Turyn method. Fan proposed several
types of binary CZCPs with parameters (10β, 4 × 10β−1),(26γ, 12 × 26γ−1),(10β26γ, 12 ×
10β26γ−1)[8], which are also GCPs. Huang used Boolean functions (BFs) to directly
construct binary CZCPs, whose CZCratio ≈ 2/3[9]. In [10], binary CZCPs of different
lengths were constructed using ZCPs and the concatenation method, with the largest
CZCratio being . Zhang searched for the optimal seed CZCP sequence by computer
and then constructed binary CZCPs with a larger CZCratio by combining GCPs and
Kronecker products [11]. In [10] and [18], binary CZCPs were mapped to quaternary
CZCPs.Liu constructed an optimal q-ary CZCP with a length of 2m(m ≥ 4) based on
generalized Boolean functions (GBFs) [4], whereas Adhikary constructed a non-optimal
q-ary CZCP with a length of 2m−1(m ≥ 4) using GBFs [5].To extend the ZCZ length, the
concept of CZCS is introduced as the extension of CZCP [4].Kumar directly constructed
(2n+1, 2n+1, 2m−1 + 2, 2π(m−3) + 1)-CZCSS using GBFs [2].In this paper, we also propose
two methods for constructing CZCPs using concatenation techniques. Based on the lit-
erature and our constructed CZCPs, a class of indirect construction methods for CZCSS
is proposed, where the set parameters can be optimized

The rest of this paper is organized as follows. In part two, the basic definitions of CZCP
and CZCSS are introduced. In part three, two constructions of CZCPs are constructed
and CZCSS, and the parameters of constructed results are compared to the literature. A
conclusion will then be presented.

2 Basic Concepts

Let a and b be two complex sequences of length N , some notations are given as follows:
• a ∥ b represents the concatenation of the sequences a and b;
• ←−a represents the reverse of a;
• a∗ represents the complex conjugate of a. Definition 1: Let a = (a0, a1, · · · , aN−1)

and b = (b0, b1, · · · , bN−1) be two sequences of length N , and the aperiodic correlation
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function of and is defined as

ρa,b(τ) =





∑N−1−τ
i=0 aib

∗
i+τ , 0 ≤ τ ≤ N − 1,∑N−1−τ

i=0 ai−τb∗i ,−(N − 1) ≤ τ < 0,
0, |τ | ≥ N.

(1)

If a ̸= b, ρa,b(τ) is called the aperiodic cross-correlation function (ACCF) of a and b; if
a = b, ρa,a(τ) is called the aperiodic auto-correlation function (AACF) of a, represented
by ρa(τ).

Definition 2[3]: If the AACF sum of sequences a and b of length N satisfies ρa(τ) +
ρb(τ) = 0 for 1 ≤ τ ≤ N − 1, then (a, b) is called GCP.

Definition 3[6]: Let (a, b) and (c, d) be two GCPs of length N if ρa,c(τ) + ρb,d(τ) = 0
for 0 ≤ τ ≤ N − 1, then (a, b) and (c, d) are referred to as mate each other.

Definition 4[2]: Given a set S = {S0, S1, . . . , SK−1}, where each element set Sp is
composed of M sequences, namely Sp = {sp0, sp1, . . . , spM−1}, spl = (spl,t, 0 ≤ t < N), where
0 ≤ p ≤ K − 1, 0 ≤ l ≤M − 1. If the set S satisfies the following properties:

P1 :
M−1∑
i=0

ρ(spi )(τ) = 0, |τ | ∈ (V1 ∪ V2) ∩ V ;

P2 :
M−1∑
i=0

ρ(spi , s
p
i+1)(τ) = 0, |τ | ∈ V2;

P3 :
M−1∑
i=0

ρ(spi , s
p′
i )(τ) = 0, |τ | ∈ {0} ∪ V1 ∪ V2;

P4 :
M−1∑
i=0

ρ(spi , s
p′
i+1)(τ) = 0, |τ | ∈ ∪V2

(2)

It is called a (K,M,N,Z)-CZCSS, where spM = sp0, s
p′
M = sp

′
0 , p ̸= p′, V1 = {1, 2, . . . , Z},

V2 = {N − Z,N − Z + 1, . . . , N − 1}, Z ≤ N . If K = 1, then S is reduced to a CZCS
[12]. If K = 1 and M = 2, S is then converted to a CZCP.

According to Definition 4, P1 indicates that each CZCP needs to have two zero auto-
correlation zones (ZACZs) when considering AACS. They are referred to in this paper as
the “front-end ZACZ” and “tail-end ZACZ” with time-shift on V1 and V2, respectively.
When evaluating ACCS, P2 indicates that each CZCP needs to have a “tail-end zero cross
correlation zone (ZCCZ)”.

Definition 5: Let (a0, b0) and (a1, b1) be two CZCPs of length N . If ρa0,a1(τ) +
ρb0,b1(τ) = 0 for ∀τ and ρa0,b1(τ) + ρb0,a1(τ) = 0 for τ ∈ V2, they are called mate of
CZCPs.

Definition 6[5]: Let (a, b) be a CZCP with length N and a ZCZ length of Z. If
the maximum achievable length of Z is Zmax, then define CZCratio = Z/Zmax. When
CZCratio = 1, CZCP is deemed optimal.

When the length of binary CZCPs is N = 2α10β26γ, Z is N/2, otherwise it is N/2−
1[10].
Lemma 1[19]:Lemma 1[19]:Lemma 1[19]: For a (K,M,N,Z)-CZCSS S = {S0, S1, . . . , SK−1}, the upper bound on
ZCZ width is given by

Z ≤ MN
K
− 1 (3)
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For the binary CZCSS, we have

Z ≤ MN
2K

(4)

A q-ary (K,M,N,Z)-CZCSSs is called optimal if Z = (MN)/K − 1 for q > 2 or
Z = (MN)/2K for q = 2.

3 The magical method

Step 1: Let (a0, b0) be a (N,Z)-CZCP and (a1, b1) be the mate of (a0, b0).

Step 2: Set α = {xi}2
n−1

i=0 , β = {yi}2
n−1

i=0 , where xi = a0 or a1, yi =

{
b0, xi = a0
b1, xi = a1

. α =

{xi}2
n−1

i=0 , where xi =

{
a0, xi = a1
a1, xi = a0

, similarly, β = {yi}2
n−1

i=0 , where yi =

{
b0, xi = a1
b1, xi = a0

so

there are the following equations:

ρxi
(τ) + ρyi(τ) = 0, |τ | ∈ V1 ∪ V2 (5)

ρxi,yi(τ) + ρyi,xi
(τ) = 0, |τ | ∈ V2 (6)

ρxi,xi
(τ) + ρyi,yi(τ) = 0,∀τ (7)

Step 3: Let H = [hi,j]2n×2n be a Hadamard matrix of order 2n × 2n, so that the matrix S

S =

[
HΘα HΘβ

HΘα HΘβ

]
(8)

where Θ represents Hadamard product. Take the row vector of S to form the sequence
set S = {Sµ, 0 ≤ µ < 2n+1}.
Theorem 1. The sequence set S constructed from the above steps is a (2n+1, 2n+1, N, Z)-
CZCSS.

Until now, only [2] proposed a class of CZCSS, then the comparison of parameters is
shown in Table 1. The direct GBF-based construction proposed in [2] and the indirect
construction method proposed in Theorem1Theorem1Theorem1 provide ideas for CZCSS design, despite the
fact that the two constructions produce non-optimal CZCSSs. Theorem1Theorem1Theorem1 uses Hadamard
matrices and the CZCPs with larger CZCratio to construct the CZCSS with more flexible
parameters, and when Z = N/2, CZCSS achieves optimal performance. Therefore, the
CZCSS derived from Theorem1Theorem1Theorem1 have a higher CZC ratio than that of [2].

Let (a, b) be a GCP of length N , then (c, d) = (
←−
b∗ ,
←−−−a∗) is the mate of (a, b). Perform

the following two concatenation operations on (a, b) and (c, d):

ConstructionI
a0 = (a ∥c∥ a ∥b∥ d ∥b),
b0 = (a ∥c∥ a ∥−b∥ − d ∥−b); (9)

ConstructionII
a0 = (a ∥a∥ − a ∥c∥ − a ∥b∥ b ∥−b∥ d ∥−b),
b0 = (a ∥a∥ − a ∥c∥ − a ∥−b∥ − b ∥b∥ − d ∥b). (10)
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Table 1: Parameter Comparison of CZCSSs

Ref Sequence Set Parameters
Methods and
constraints

Remarks

[2] (2n+1, 2n+1, 2m−1 + 2, 2π(m−3) + 1) GBFs. m > 4 Non-optimal

Thm.2 (2n+1, 2n+1, N, Z)

Hadamard
Matrix and
the Hadamard
Product of
CZCP

when Z = N/2,
optimal

Theorem 2. (a0, b0) obtained from the above Construction I is a (6N, 2N − 1)-CZCP,
(a0, b0) obtained from the Construction II is a (10N, 3N − 1)-CZCP.

The comparison of CZCPs parameters is shown in Table 2. Compared to existing
literature, Theorem 2Theorem 2Theorem 2 uses GCPs and the concatenation operation to obtain CZCPs with
larger CZCratio and new parameter combinations.

4 Proof

Proof of Theorem1. Due to ρxi
(τ) + ρyi(τ) = 0 for |τ | ∈ V1 ∪ V2, 0 ≤ i < 2n, the AACF

of Sµ is as follow

ρSµ(τ) =
2n−1∑

i=0

h2µ mod 2n,i(ρxi
(τ) + ρyi(τ)) = 0, |τ | ∈ V1 ∪ V2 (11)

Equation (11) satisfies the condition P1 of Definition 4.

ρSi
µ,S

i+1
µ

(τ) =
2n−2∑
i=0

hµ mod 2n,ihµ mod 2n,i+1(ρxi,xi+1
(τ) + ρyi,yi+1

(τ))+

hµ mod 2n,2n−1hµ mod 2n,0(ρx2n−1,y0(τ) + ρy2n−1,x0(τ))
(12)

When xi = xi+1, yi = yi+1, obtained from ρxi
(τ) + ρyi(τ) = 0, |τ | ∈ V1 ∪ V2 and

ρx0,y0(τ) + ρy0,x0(τ) = 0, |τ | ∈ V2:

ρSi
µ,S

i+1
µ

(τ) = 0 (13)

When xi ̸= xi+1, yi ̸= yi+1, obtained from ρxi,xi
(τ) + ρyi,yi(τ) = 0 for all τ and

ρx0,y0(τ) + ρy0,x0(τ) = 0 for |τ | ∈ V2, so we have

ρSi
µ,S

i+1
µ

(τ) = 0 (14)

Equations (13) and (14) satisfy the condition P2 of Definition 4.
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Table 2: The Comparison of CZCP Parameters

Ref Parameters CZCratio Methods Optimality

[4]
(2N,N),N = 2α10β26γ 1 GCPs Yes

(2m, 2m−1),m ≥ 2 1 GBF Yes

[5]

(
2m−1 + 2, 2π(m−3) + 1

)
,m ≥ 4 ≤ 1

2
GBF No

(2N + 2, N/2 + 1) ≤ 1
2

Insertion No
(12, 5) (24, 11) 1 Barker code Yes

(12N, 5N) , (24N, 11N) ≤ 5
6
,≤ 11

12

Kronecker prod-
uct and GCPs

No

[8]

(
10β, 4× 10β−1

)
, β ≥ 1 4

5 Kronecker prod-
uct and GCPs

No
(26γ, 12× 26γ−1), γ ≥ 1 12

13
No(

10β26γ, 12× 10β26γ−1
)
, γ ≥ 1 12

13
No

[9]

(
2m−1 + 2v+1, 2π(v+1)−1 + 2v − 1

)

m ≥ 4, 0 ≤ v ≤ m− 3
≤ 2

3
BF No

[10]

(2m+2 + 2m+1, 2m+1 − 1) ≤ 2
3

ZCPs and con-
catenation oper-
ation

No
(2m+4 + 2m+3 + 2m+2, 2m+3 − 1) ≤ 4

7
No(

2α+210β26γ + 4, 3× 2α−110β26γ
)

3
4

No(
7× 2α+210β26γ, 3× 2α+210β26γ − 1

)
6
7

No(
3× 2α+210β26γ, 5× 2α+110β26γ − 1

)
5
6

No

[11]

(M, M
2
− 1),M ∈ {6, 12, 24, 28, 48, 56} 1

Computer
Search

Yes

(MN, (5M−6
10

)N), N = 10β+1 5M−6
5M

GCPs and Kro-
necker product

No
MN, (13M−14

26
)N,N = 26γ+1 13M−14

13M
No

(96, 47), (112, 55) 1 Yes
(96N, 47N) ≤ 27

28
No

(112N, 55N) ≤ 55
56

No

Thm.1
(6N, 2N − 1) ≤ 2/3 GCPs concate-

nation operation
No

(10N, 3N − 1) ≤ 3/5 No

Let Se and Sf denote two different rows of S, when 0 ≤ e, f < 2n or 2n ≤ e, f <
2n+1,using the properties of the Hadamard matrix, we have

ρSe,Sf
(τ) =

2n−1∑

i=0

he mod 2n,ihf mod 2n,i(ρxi
(τ) + ρyi(τ)) = 0 (15)

Where |τ | ∈ V1 ∪ V2.
When 0 ≤ e < 2n, 2n ≤ f < 2n+1, he mod 2n,i = hf mod 2n,i, then

ρSe,Sf
(τ) =

2n−1∑

i=0

h2e mod 2n,i(ρxi,xi
(τ) + ρyi,yi(τ)) = 0 (16)

Where 0 ≤ |τ | < N .
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Equations (15) and (16) satisfy the condition P3 of Definition 4.
From equation (8), two different rows e, f ,

ρSi
e,S

i+1
f

(τ) =
2n−2∑
i=0

he mod 2n,ihf mod 2n,i+1(ρxi,xi+1
(τ) + ρyi,yi+1

(τ))+

he mod 2n,2n−1hf mod 2n,0ρx2n−1,y0(τ) + he mod 2n,2n−1hf mod 2n,0ρy2n−1,x0(τ)
(17)

Assuming xi = xi+1, yi = yi+1, then ρxi
(τ) + ρyi(τ) = 0, |τ | ∈ V1 ∪ V2 and ρx0,y0(τ) +

ρy0,x0(τ) = 0, |τ | ∈ V2, therefore

ρSi
e,S

i+1
f

(τ) = 0 + ρx0,y0(τ) + ρy0,x0(τ) = 0 (18)

Assuming xi ̸= xi+1, yi ̸= yi+1, ρxi,xi
(τ) + ρyi,yi(τ) = 0 for ∀τ , ρx0,y0(τ) + ρy0,x0(τ) = 0,

|τ | ∈ V2, then

ρSi
e,S

i+1
f

(τ) = 0 + ρx0,y0(τ) + ρy0,x0(τ) = 0 (19)

Equations (18) and (19) satisfy the P4 condition of Definition 4. In summary, S is a
(2n+1, 2n+1, N, Z)-CZCSS.This completes the proof of Theorem1.

Proof of Theorem2. Firstly, let’s prove Construction I.
For τ > 0, according to Definitions 2 and 3, the AACFs of a0 and b0 are calculated in

the following ways:
From Definition 2 and Definition 3, it can be concluded that:
ρa(τ)+ρb(τ) = 0, 1 ≤ τ ≤ N−1; ρc(τ)+ρd(τ) = 0, 1 ≤ τ ≤ N−1; ρ∗a,c(τ)+ρ∗b,d(τ) = 0,

0 ≤ τ ≤ N − 1.
For 0 < τ ≤ N − 1, we have

ρa0(τ) = 2ρa(τ) + ρc(τ) + 2ρb(τ) + ρd(τ) + ρ∗c,a(N − τ) + ρ∗a,c(N − τ) + ρ∗b,a(N − τ)+
ρ∗d,b(N − τ) + ρ∗b,d(N − τ)

(20)

ρb0(τ) = 2ρa(τ) + ρc(τ) + 2ρb(τ) + ρd(τ) + ρ∗c,a(N − τ) + ρ∗a,c(N − τ)− ρ∗b,a(N − τ)+
ρ∗d,b(N − τ) + ρ∗b,d(N − τ)

(21)

then

ρa0(τ) + ρb0(τ) = 4ρa(τ) + 4ρb(τ) + 2ρc(τ) + 2ρd(τ) + 2ρ∗c,a(N − τ) + 2ρ∗a,c(N − τ)+
2ρ∗b,d(N − τ) + 2ρ∗d,b(N − τ) = 0

(22)

Similarly,for τ = N , we have

ρa0(τ) + ρb0(τ) = 2ρ∗a,c(τ −N) + 2ρ∗c,a(τ −N) + 2ρ∗b,d(τ −N) + 2ρ∗d,b(τ −N) = 0 (23)
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For N + 1 ≤ τ ≤ 2N − 1, we have

ρa0(τ) + ρb0(τ) = 2ρa,c(τ −N) + 2ρc,a(τ −N) + 2ρb,d(τ −N) + 2ρd,b(τ −N)+
2ρ∗a(2N − τ) + 2ρ∗b(2N − τ) = 0

(24)

For τ = 2N , we have

ρa0(τ) + ρb0(τ) = 2ρa(τ − 2N) + 2ρb(τ − 2N) = 4N (25)

For 2N + 1 ≤ τ ≤ 3N − 1, we have

ρa0(τ) + ρb0(τ) = 2ρa(τ − 2N) + 2ρb(τ − 2N) = 0 (26)

For 3N ≤ τ ≤ 6N − 1, we have

ρa0(τ) + ρb0(τ) = 0 (27)

From the above, it can be obtained that

ρa0(τ) + ρb0(τ) =





0, 0 <τ ≤ 2N − 1
4N, τ = 2N
0, 2N + 1 ≤ τ ≤ 6N − 1

(28)

Similarly, when τ < 0, the conclusion also holds. Therefore, it can be concluded that

ρa0(τ) + ρb0(τ) =





0, 0 < |τ | ≤ 2N − 1
4N, |τ | = 2N
0, 2N + 1 ≤ |τ | ≤ 6N − 1

(29)

The condition C1 of Definitions 4 is satisfied.
Next, the ACCFs of a0 and b0 are calculated as follows:
For 4N + 1 ≤ τ ≤ 6N − 1, we have

ρa0,b0(τ) + ρb0,a0(τ) = 0 (30)

Therefore, when 4N + 1 ≤ τ ≤ 6N − 1, ρa0,b0(τ) + ρb0,a0(τ) = 0. Similarly, when
1− 6N ≤ τ ≤ −1− 4N , ρa0,b0(τ) + ρb0,a0(τ) = 0. So (a0, b0) satisfies the condition C2 of
Definitions 4 for 4N+1 ≤ |τ | ≤ 6N−1. In summary, (a0, b0) obtained from Construction
I is a (6N, 2N − 1)-CZCP.

Secondly, let’s demonstrate Construction II. Similar to Construction I it can be con-
cluded that

ρa0(τ) + ρb0(τ) =





0, 1 ≤ |τ | ≤ 3N − 1
−4N, |τ | = 3N
0, 3N + 1 ≤ |τ | ≤ 4N − 1
−4N, |τ | = 4N
0, 4N + 1 ≤ |τ | ≤ 10N − 1

(31)

For 7N + 1 ≤ |τ | ≤ 10N − 1, we have

ρa0,b0(τ) + ρb0,a0(τ) = 0 (32)

According to (31) and (32), the conditions C1 and C2 of Definitions 4 are satisfied, so
(a0, b0) is a (10N, 3N − 1)-CZCP. This completes the proof of Theorem2.
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5 Conclusion

This paper presents a class of optimal CZCSS methods based on CZCPs and their
mates, utilizing Hadamard products. Furthermore, to enrich the base sequences, two types
of CZCPs are constructed using the concatenation technique and GCPs, thus extending
the parameter range of CZCPs. Currently, there are few results on the construction of
CZCSSs, with only one type of direct construction method based on GBF proposed in
[2]. The CZCSSs constructed in this article can achieve flexible sequence length and ZCZ
length. The construction results of this article can provide more options for training
sequences in SM systems.
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Abstract

Z-complementary code sets (ZCCSs) are widely used in multi-carrier code-division
multiple access (MC-CDMA) and multiple-input multiple-output (MIMO) commu-
nication because of their ideal correlation properties within a certain region around
the in-phase position named zero correlation zone (ZCZ). In this paper, we intro-
duce the definition of a partially m-shifted orthogonal complementary code, and
use it to construct an optimal ZCCS by combining complete complementary codes
(CCCs). The resultant optimal ZCCSs have new parameters which have not been
reported before.

1 Introduction

In 1951, Golay first proposed the concept of Golay complementary pairs (GCPs) while
studying infrared multislit spectroscopy [1]. Ten years later, Golay presented the mathe-
matical definition, properties and constructions of GCPs [2]. GCPs are a pair of sequences
that satisfy the sum of aperiodic autocorrelation functions (AACFs) is a Dirac delta func-
tion [2]. Inspired by Golay’s work, in 1972 Tseng and Liu extended the concept of GCPs
to complementary sets (CSs) containing two or more constituent sequences [3]. CSs are
a set of sequences that satisfy the sum of aperiodic autocorrelation functions (AACFs) is
a Dirac delta function [3]. In addition, any two CSs with zero aperiodic cross-correlation
sums (ACCSs) are called mutually orthogonal. Furthermore, a set of CSs that are mu-
tually orthogonal to each other is referred to as a mutually orthogonal complementary
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sequence sets (MOCSSs). Owing to the ideal correlation properties, MOCSSs have been
applied in multi-carrier code division multiple access (MC-CDMA) systems [4], MIMO
channel estimation [5] and suppressing the multiple access interference. An (M,N,L)-
MOCSS is a family of M CSs, where M denotes the set size (i.e., the number of users), N
denotes the flock size (i.e., the number of sub-carriers) and L denotes the sequence length
[3]. It is worth noting that the set size of (M,N,L)-MOCSS is upper bounded by the
flock size, i.e., M ≤ N [6]. When the set size equals the flock size, the MOCSS is called
a complete complementary code (CCC) [6]. However, a significant limitation of CCC is
that its set size (i.e., the number of users) is upper bounded by the flock size. To support
a larger number of users in MC-CDMA systems, Z-complementary code sets (ZCCSs)
were proposed by Fan et al. [7], which have ideal correlations within a zone around the
in-phase position named the zero correlation zone (ZCZ).

In recent years, optimal ZCCSs have attracted a lot of research. For an (M,N,L, Z)-
ZCCS, the upper bound of its set size is given by [8], i.e. M ≤ NbL/Zc, where bxc
denotes the largest integer smaller than or equal to the real number x. When the equal
sign holds, the ZCCS is said to optimal. At present, the systematic construction of
optimal ZCCSs can be divided into two types: the direct construction methods based on
generalized Boolean functions (GBFs) and the indirect construction methods based on
base sequences.

First we review the direct constructions. In 2018, Wu et al. [9] first presented a
construction of optimal ZCCSs based on generalized Boolean functions (GBFs), and dis-
cussed their peak-to-average power ratio (PAPR). In 2019, Sarkar et al. [10] constructed
optimal ZCCSs from the second-order cosets of the q-ary generalization of the first-order
Reed-Muller codes through a graphical representation. Later, in 2020, Sarkar et al. [11]
proposed a construction of optimal ZCCSs with non-power-of-two lengths based on GBFs.
And then in 2021, Sarkar et al. [12] also proposed a construction of optimal ZCCSs with
non-power-of-two lengths based on Pseudo Boolean functions (PBFs). In addition, based
on GBFs, Sarkar et al. [13] and Wu et al. [14] gave some optimal ZCCSs, respectively.
Recently, based on GBFs, Ghosh et al. gave a construction of optimal ZCCSs with even
lengths [15], and proposed three new classes of optimal binary ZCCSs [16]. Based on
extended Boolean functions (EBFs), Shen et al. [17] proposed a construction of optimal
ZCCSs, and Xiao et al. [18] obtained a new class of optimal ZCCSs.

Next, we review the indirect constructions. In [19], Das et al. presented a novel
construction of optimal ZCCSs described in a z-domain framework by introducing the
concept of Z-paraunitary (ZPU) matrices. In 2019, Adhikary et al. [20] proposed a
construction of optimal ZCCSs based on the Hadamard matrix and Z-complementary
pairs (ZCPs), which can obtain optimal ZCCSs of odd and even lengths. The ZCP has
zero AACSs within a certain region around the in-phase position named zero correlation
zone (ZCZ). A ZCP of length L and ZCZ width Z is abbreviated as (L,Z)-ZCP. Later,
based on ZCPs and CCCs, Xie et al. [21] also obtained a family of optimal ZCCSs.
Recently, combining optimal ZCCSs and CCCs, Yu et al. [22] designed two classes of
optimal ZCCSs with enlarged parameters in terms of sequence lengths and set size. Based
on orthogonal matrices, Cui et al. [23] proposed a novel construction of three classes of
optimal ZCCSs with flexible lengths.
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From the application perspective, modern communication systems require very flexible
choices of set sizes, sequence lengths and large ZCZ width without any sacrifice of the
desired correlation properties. So, this paper presents a construction of optimal ZCCSs
with more flexible choices by introducing the concept of partially m-shift orthogonal
complementary code. The partially m-shift orthogonal complementary code has zero
autocorrelation and cross-correlation sums for each m time-shift within a certain region
around the in-phase position. Based on partially m-shift orthogonal complementary code
and CCCs, we get a class of optimal ZCCSs with sequence lengths which have not been
reported before.

The remainder of the paper is organized as follows. In Section 2, we will show some
basic notations, definitions, and a brief introduction of partially m-shift orthogonal com-
plementary code. In Section 3, we will present the constructions of both ZCCSs and
optimal ZCCSs based on partially m-shift orthogonal complementary code and CCCs. In
Section 4, we will compare our results with existing ones. Finally, we will conclude our
work in Section 5.

2 Preliminaries

In this section, we will present some basic notations, definitions, and a brief introduction
of partially m-shift orthogonal complementary code.

• a and b denotes two unimodular complex valued sequences of length L, i.e., a =(
a(0), a(1), · · · , a(L− 1)

)
and b =

(
b(0), b(1), · · · , b(L− 1)

)
.

• a||b =
(
a(0), · · · , a(L−1), b(0), · · · , b(L−1)

)
represents the concatenation of a and

b.

• intlv(a0, a1, · · · , aN−1)=
(
a0(0), a1(0), · · · , aN−1(0), a0(1), a1(1), · · · , aN−1(1), · · · ,

a0(L− 1), a1(L− 1), · · · ,aN−1(L− 1)
)

denotes the bit-interleaved sequences of
{a0, a1, · · · , aN−1}.

• ea =
(
ea(0), ea(1), · · · , ea(L− 1)

)
, where e is a complex number. When e = −1, ea

is written as −a.

• x∗ represents the complex conjugate of a complex number x.

• bxc denotes the largest integer no more than the real number x. dxe represents the
smallest integer greater than or equal to x.

• 〈k〉N is the least non-negative integer of k modulo N , where k and N are two
non-negative integers.

Given two complex valued sequences a and b of length L, the aperiodic correlation
function of a and b at time-shift τ is defined as

ρa,b(τ) =





L−1−τ∑
n=0

a(n)b∗(n+ τ), 0 ≤ τ ≤ L− 1,

0, τ ≥ L.
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When a 6= b, ρa,b(τ) is called the aperiodic cross-correlation function (ACCF); otherwise,
it is called the aperiodic autocorrelation function (AACF) of a. For simplicity, AACF of
a will be denoted by ρa(τ).

A sequence set A(i)(1 ≤ i ≤ M) contains N constituent sequences of length L, i.e.,
A(i) = {aik : 0 ≤ k < N}, where aik =

(
aik(0), aik(1), · · · , aik(L − 1)

)
.The aperiodic cross-

correlation function sum of A(i) and A(j) at time-shift τ is defined as

ρA(i),A(j)(τ) =
N−1∑

k=0

ρai
k,a

j
k
(τ).

When i = j, ρA(i),A(j)(τ) is called the aperiodic autocorrelation function sum (AACFS),
denoted by ρA(i)(τ) for short.

Definition 1. Let A =
{
A(0), A(1), · · · , A(M−1)} be a set containing M sequence sets,

where A(i) consists of N constituent sequences of length L. A is called an ZCCS, if the
following equation holds:

ρA(i),A(j)(τ) =





NL, τ = 0, i = j,

0, 0 < τ < Z, i = j,

0, 0 ≤ τ < Z, i 6= j,

where Z is the ZCZ width. For simplicity, it is denoted by (M,N,L, Z)-ZCCS.

The following lemma gives a bound on the parameters of an (M,N,L, Z)-ZCCS.

Lemma 2 ([8]). For any (M,N,L, Z)-ZCSS, we have

M ≤ N

⌊
L

Z

⌋
. (1)

In this paper, an (M,N,L, Z)-ZCCS is said to be optimal if the equal sign in Eq. (1)
holds, i.e., M = N

⌊
L
Z

⌋
. Moreover, when N = 2 and L 6= 2a10b26c, one can have a tighter

bound, i.e., M ≤ 2dL/Z − 1e [7]. When the equal sign holds, the ZCCS is called optimal.
When Z = L, the ZCCS is said an MOCSS, denoted by (M,N,L)-MOCSS; When Z = L
and M = N , the ZCCS is called a CCC, denoted by (M,M,L)-CCC.

In [24], the authors defined a partially E sequence and used it to construct a ZCP. Be-
low, we will introduce a partially m-shift orthogonal complementary code for constructing
ZCCSs.

Definition 3. Let A =
{
A(0), A(1), · · · , A(M−1)} be a set containing M sequence sets,

where A(i) consists of N constituent sequences of length L. Set the integer m to satisfy
0 < m ≤ Z ≤ L, then A is said to be a partially m-shift orthogonal complementary code
if

ρA(i),A(j)(mτ) =





NL, τ = 0, i = j,

0, 0 < τ < Z
m
, i = j,

0, 0 ≤ τ < Z
m
, i 6= j,
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where Z is the zone width around the in-phase position. For simplicity, it is denoted by
(M,N,L, Z)-partially m-shift orthogonal complementary code.

When m = 2 and M = N = 1, the partially m-shift orthogonal complementary code
is called a partially E sequence [24]; When m = 2, M = 1 and Z = L, the partially
m-shift orthogonal complementary code is called an even-shift complementary sequence
set (ESCSS) [25]; When m = 1, the partially m-shift orthogonal complementary code
is called a ZCCS; When m = 1, M = N and Z = L, the partially m-shift orthogonal
complementary code is called a CCC [6]. An (M,N,L, Z)-partially m-shift orthogonal
complementary code A contains M distinct partially m-shift complementary sequence
sets, i.e. A =

{
A(0), A(1), · · · , A(M−1)}, where A(i) satisfies ρA(i)(mτ) = 0, 0 < τ < Z

m
.

In general, for any given (M,N,L, Z)-partially m-shift orthogonal complementary code,
the maximum number M of different partially m-shift complementary sequence sets is
bounded by

M ≤ mN

⌊
L

Z

⌋
. (2)

3 Construction of Optimal Z-complementary Codes Sets

In this section, based on partially m-shift orthogonal complementary code and CCC,
we will present a construction of ZCCSs with more flexible lengths. Before we begin,
let us first define an operator φm, which is useful for the construction of ZCCSs. Let
A = {ak : 0 ≤ k < m} be a set of m constituent sequences of length L1, where ak =(
ak(0), ak(1), · · · , ak(L1− 1)

)
. Let b =

(
b(0), b(1), · · · , b(L2− 1)

)
be a sequence of length

L2, then φm(b, A) is a sequence of length L1L2 defined as

φm(b, A) = b(0)a〈0〉m||b(1)a〈1〉m|| · · · ||b(L2 − 1)a〈L2−1〉m .

For better understanding, we will give an example to describe.

Example 4. Let A = {a0, a1, a2} be a set of 3 constituent sequences of length L and
C = {c0, c1, c2, c3} be a set of 4 constituent sequences of length L. Also let b =
(1, 1,−1,−1, 1,−1,−1) be a sequence of length 7, then

φ3(b, A) = a0||a1|| − a2|| − a0||a1|| − a2|| − a0;

φ4(b, C) = c0||c1|| − c2|| − c3||c0|| − c1|| − c2.

In what follows, we will present the main results of this paper.

Lemma 5. Let A = {A(0), A(1), · · · , A(M1−1)} be an (M1, N1, L1, Z1)-partially m-shift or-
thogonal complementary code and B = {B(0), B(1), · · · , B(M2−1)} be an (M2,M2, L2)-CCC,
where A(i) = {ai0, ai1, · · · , aiN1−1}, ail =

(
ail(0), ail(1), · · · , ail(L1 − 1)

)
, B(j) = {bj0,bj1, · · · ,

bjM2−1}, bjk =
(
bjk(0), bjk(1), · · · , bjk(L2 − 1)

)
, 0 ≤ i ≤ M1 − 1, 0 ≤ j, k ≤ M2 − 1,

0 ≤ l ≤ N1 − 1. Also set integer m to satisfy m|M2, C
t
k = {bmtk ,bmt+1

k , · · · ,bmt+m−1k },
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where 0 ≤ t ≤ M2/m− 1. Define S = {S0,0, S0,1, · · · , SM1−1,M2/m−1}, where Si,t consists
of N1M2 constituent sequences of length L1L2, i.e.,

Si,t =
{
φm(ai0, C

t
0), φm(ai0, C

t
1), · · · , φm(ai0, C

t
M2−1),

φm(ai1, C
t
0), φm(ai1, C

t
1), · · · , φm(ai1, C

t
M2−1),

· · ·
φm(aiN1−1, C

t
0), φm(aiN1−1, C

t
1), · · · , φm(aiN1−1, C

t
M2−1)

}
.

Then S is an (M1M2/m,N1M2, L1L2, Z1L2)-ZCCS.

Proof. Let Si,t and Si
′,t′ be two arbitrary sequence sets of S. For any integer τ = qL2 + r,

n = lM2 + k, where 0 ≤ q ≤ L1− 1, 0 ≤ r ≤ L2− 1, 0 ≤ l ≤ N1− 1, 0 ≤ k ≤M2− 1. We
proceed with the proof considering the following cases.

• When r = 0, we have

ρSi,t,Si′,t′ (τ) =

N1M2−1∑

n=0

ρφm(ai
b n
M2

c,C
t
〈n〉M2

), φm(ai′
b n
M2

c,C
t′
〈n〉M2

)(τ)

=

N1−1∑

l=0

M2−1∑

k=0

[ L1−1−q∑

h=0

ail(h)ai
′
l (h+ q) · ρ

b
mt+〈h〉m
k ,b

mt′+〈h+q〉m
k

(0)
]

=

N1−1∑

l=0

L1−1−q∑

h=0

ail(h)ai
′
l (h+ q) · ρB(mt+〈h〉m),B(mt′+〈h+q〉m)(0).

(3)

For the case t 6= t′, consider 0 ≤ τ < Z1L2 (i.e., 0 ≤ q ≤ Z1 − 1), since B is a CCC,
ρB(mt+〈h〉m),B(mt′+〈h+q〉m)(0) = 0, we have ρSi,t,Si′,t′ (τ) = 0.

For the case t = t′, consider 0 ≤ τ < Z1L2 (i.e., 0 ≤ q ≤ Z1 − 1), when 〈q〉m 6= 0,
since B is a CCC, ρB(mt+〈h〉m),B(mt′+〈h+q〉m)(0) = 0, one has ρSi,t,Si′,t′ (τ) = 0; when
〈q〉m = 0, ρB(mt+〈h〉m),B(mt′+〈h+q〉m)(0) = M2L2, then

ρSi,t,Si′,t′ (τ) =

N1−1∑

l=0

L1−1−q∑

h=0

ail(h)ai
′
l (h+ q) · ρB(mt+〈h〉m),B(mt′+〈h+q〉m)(0)

=M2L2 ·
N1−1∑

l=0

L1−1−q∑

h=0

ail(h)ai
′
l (h+ q)

=M2L2 · ρA(i),A(i′)(mα)

where 0 ≤ α < Z1

m
. If i 6= i′, since A is an (M1, N1, L1, Z1)-partially m-shift

orthogonal complementary code, ρA(i),A(i′)(mα) = 0, then ρSi,t,Si′,t′ (τ) = 0. If i = i′,
when τ = 0, ρSi,t,Si′,t′ (τ) = M2L2N1L1; when 1 ≤ τ < Z1L2 (i.e., 1 ≤ q ≤ Z1−1, 1 ≤
α < Z1

m
), since A is an (M1, N1, L1, Z1)-partially m-shift orthogonal complementary

code, we have ρA(i),A(i′)(mα) = 0 and then ρSi,t,Si′,t′ (τ) = 0.
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• When r 6= 0, we have

ρSi,t,Si′,t′ (τ) =

N1M2−1∑

n=0

ρφm(ai
b n
M2

c,C
t
〈n〉M2

), φm(ai′
b n
M2

c,C
t′
〈n〉M2

)(τ)

=

N1−1∑

l=0

M2−1∑

k=0

[ L1−1−q∑

h=0

ail(h)ai
′
l (h+ q) · ρ

b
mt+〈h〉m
k ,b

mt′+〈h+q〉m
k

(r)

+

L1−2−q∑

h=0

ail(h)ai
′
l (h+ q + 1) · ρ

b
mt+〈h〉m
k ,b

mt′+〈h+q+1〉m
k

(r − L2)
]

=

N1−1∑

l=0

[ L1−1−q∑

h=0

ail(h)ai
′
l (h+ q) · ρB(mt+〈h〉m),B(mt′+〈h+q〉m)(r)

+

L1−2−q∑

h=0

ail(h)ai
′
l (h+ q + 1) · ρB(mt+〈h〉m),B(mt′+〈h+q+1〉m)(r − L2)

]
.

The case that r 6= 0 can be similarly discussed.

According to the discussion above, S is an (M1M2/m,N1M2, L1L2, Z1L2)-ZCCS. This
completes the proof.

By Lemma 5, we have the following theorem for the construction of optimal ZCCSs.

Theorem 6. Let A = {A(0), · · · , A(M1−1)} be an (M1, N1, L1, Z1)-partially m-shift orthog-
onal complementary code and satisfy M1 = mN1bL1

Z1
c. If B = {B(0), B(1), · · · , B(M2−1)} is

an (M2,M2, L2)-CCC, then S given by Lemma 5 is an optimal (M1M2/m,N1M2, L1L2,
Z1L2)-ZCCS.

Proof. The proof is analog to that of Lemma 5, so we only need to prove that S is an
optimal (M1M2/m,N1M2, L1L2, Z1L2)-ZCCS. Since M1 = mN1bL1

Z1
c, the set size of ZCC-

S S comes up to the theoretical bound in Lemma 2, that is, M1M2/m = N1M2bL1

Z1
c =

N1M2bL1L2

Z1L2
c. Therefore, S is an optimal (M1M2/m,N1M2, L1L2, Z1L2)-ZCCS. This com-

pletes the proof.

Below, we will show how to obtain flexible partially m-shifted orthogonal complemen-
tary codes for generating optimal ZCCSs with new parameters.

The partiallym-shift orthogonal complementary code can be obtained by the computer
search, in addition, it can be obtained from the ZCCS by bit-interleaving. For example,
A = {A(0), A(1)} is a (2, 2, 17, 9)-ZCCS, i.e.,

A(0) = {a0
0, a

0
1} = {(−1,−1,−1,−1,−1,−1,−1, 1,−1, 1, 1, 1,−1,−1,−1, 1, 1),

(−1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1,−1,−1, 1)},

A(1) = {a1
0, a

1
1} = {(1,−1,−1, 1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1, 1,−1,−1),

(−1,−1, 1, 1, 1,−1,−1,−1, 1,−1, 1, 1, 1, 1, 1, 1, 1)}.
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Then by bit-interleaving, we get a (2, 1, 34, 18)-partially 2-shift orthogonal complementary
code {b0

0,b
1
0}, i.e.,

b0
0 = intlv(a0

0, a
0
1) = (− 1,−1,−1,−1,−1, 1,−1,−1,−1, 1,−1, 1,−1,−1, 1,−1,−1,

1, 1, 1, 1,−1, 1, 1,−1,−1,−1, 1,−1,−1, 1,−1, 1, 1),

b1
0 = intlv(a1

0, a
1
1) = (1,−1,−1,−1,−1, 1, 1, 1,−1, 1, 1,−1,−1,−1, 1,−1, 1,

1,−1,−1,−1, 1, 1, 1, 1, 1,−1, 1, 1, 1,−1, 1,−1, 1).

(4)

And we have ρb0
0
(2) = ρb0

0
(4) = · · · = ρb0

0
(16) = 0, ρb0

0
(18) = 2, ρb1

0
(2) = ρb1

0
(4) = · · · =

ρb1
0
(16) = 0, ρb1

0
(18) = 2 and ρb0

0,b
1
0
(0) = ρb0

0,b
1
0
(2) = · · · = ρb0

0,b
1
0
(32) = 0, ρb1

0,b
0
0
(0) =

ρb1
0,b

0
0
(2) = · · · = ρb1

0,b
0
0
(32) = 0. Similarly, based on (4, 4, 17, 9)-ZCCS, we can obtain

(4, 1, 68, 36)-partially 4-shift orthogonal complementary code and (4, 2, 34, 18)-partially 2-
shift orthogonal complementary code using bit-interleaving, respectively. Thus, a partially
m-shift orthogonal complementary code with more flexible parameters can be obtained.
Then by Theorem 6, we can offer more flexible choices of optimal ZCCS parameters.

Now, we give some examples of optimal ZCCS to illustrate the result of Theorem 6.

Table 1: Binary (8, 2, 32, 16)-partially 2-shift orthogonal complementary code
(
a00
a01

)
=

(
+ + + + +−−+ + + + + +−−+ + + + + +−−+−−−−−+ +−
−−−−−+ +−+ + + + +−−+−−−−−+ +−−−−−−+ +−

)

(
a10
a11

)
=

(
+ +−−+−+−+ +−−+−+−+ +−−+−+−−−+ +−+−+
−−+ +−+−+ + +−−+−+−−−+ +−+−+−−+ +−+−+

)

(
a20
a21

)
=

(
+ + + + +−−+ + + + + +−−+−−−−−+ +−+ + + + +−−+
−−−−−+ +−+ + + + +−−+ + + + + +−−+ + + + + +−−+

)

(
a30
a31

)
=

(
+ +−−+−+−+ +−−+−+−−−+ +−+−+ + +−−+−+−
−−+ +−+−+ + +−−+−+−+ +−−+−+−+ +−−+−+−

)

(
a40
a41

)
=

(
+ + + + +−−+−−−−−+ +−+ + + + +−−+ + + + + +−−+
−−−−−+ +−−−−−−+ +−−−−−−+ +−+ + + + +−−+

)

(
a50
a51

)
=

(
+ +−−+−+−−−+ +−+−+ + +−−+−+−+ +−−+−+−
−−+ +−+−+−−+ +−+−+−−+ +−+−+ + +−−+−+−

)

(
a60
a61

)
=

(
+ + + + +−−+−−−−−+ +−−−−−−+ +−−−−−−+ +−
−−−−−+ +−−−−−−+ +−+ + + + +−−+−−−−−+ +−

)

(
a70
a71

)
=

(
+ +−−+−+−−−+ +−+−+−−+ +−+−+−−+ +−+−+
−−+ +−+−+−−+ +−+−+ + +−−+−+−−−+ +−+−+

)

where 1 and −1 are denoted by + and −, respectively.

Example 7. Let A be a binary (2, 1, 34, 18)-partially 2-shift orthogonal complementary
code given by (4) and satisfy the equal sign in Eq. (2). Let B be a binary (4, 4, 3)-
CCC from [22, Table III]. Then we can get an optimal binary (4, 4, 102, 54)-ZCCS S from
Theorem 6, which is new optimal ZCCSs not presented in previous work.

Example 8. Let A be a binary (8, 2, 32, 16)-partially 2-shift orthogonal complementary
code, as shown in Table 1, and satisfy the equal sign in Eq. (2). Let B be a binary
(4, 4, 3)-CCC from [22, Table III]. Then we can get an optimal binary (16, 8, 96, 48)-ZCCS
S from Theorem 6.
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4 Comparison with the Previous Works

In Table 2, we list the parameters of our proposed optimal ZCCSs with that of the previous
works. Compared with the previous construction methods, our proposed construction is
different in the following ways:

• In [9, 10, 11, 12, 13, 14, 15, 17, 18, 21], the constructions are based on GBFs, PBFs
and EBFs. Hence, for the binary optimal ZCCSs, the parameters are of the form
of power of two. Compared to that, we can obtain optimal ZCCSs with non-power-
of-two lengths. For example, we get an optimal binary (4, 4, 102, 54)-ZCCS, which
can not be generated by [9, 10, 11, 12, 13, 14, 15, 17, 18, 21]. In [16], the authors
offered optimal binary ZCCS with both power-of-two and non-power-of-two lengths
through GBF. However, we can obtain an optimal binary (4, 4, 102, 54)-ZCCS, which
can not be constructed by [16].

• In [20], Adhikary et al. constructed optimal (2n+1, 2n+1, L, Z)-ZCCS by using (L,Z)-
ZCP and Hadamard matrix, where Z > L

2
. In addition, in [21], using (L,Z)-ZCP

and (2k+1, 2k+1, 2m)-CCC, the authors constructed an optimal (2k+2, 2k+2, 2m ·L, 2m ·
Z)-ZCCS. Note that, here the flock size and set size are same. However, we can
design an optimal ZCCS with a different set size and flock size and a large ZCZ
width according to the practical application. For example, we can obtain an optimal
binary (16, 8, 96, 48)-ZCCS, which can not be constructed by [20, 21].

• In [19], Das et al. constructed optimal ZCCSs, based on ZPU matrices. In [22], based
on optimal ZCCSs and CCCs, the authors derived optimal ZCCSs with enlarged
parameters by using the Kronecker product. Note that, if we represent ZCCSs
in [22] as matrices of polynomials as in [19], the same ZCCSs can be obtained
by a different approach in [19]. However, based on (M1, N1, L1, Z1)-partially m-
shift orthogonal complementary code and (M2,M2, L2)-CCC, we can generate an
optimal (M1M2/m,N1M2, L1L2, Z1L2)-ZCCS with flexible parameters. In fact, the
results of [22] are our special case. For example, when m = 1, the parameters of
the optimal ZCCS generated by us are the same as the result of [22, Th.1]. In
addition, we can obtain an optimal binary (4, 4, 102, 54)-ZCCS, which can not be
constructed by [19, 22]. In [23], based on L × L orthogonal matrices and N × N
orthogonal matrices, Cui et al. constructed optimal (HL,N,L, Z)-ZCCSs, where
Z|L,N = HZ. It should be noted that the length of these optimal ZCCSs is limited
by the order of the orthogonal matrices. For example, we can get an optimal binary
(4, 4, 102, 54)-ZCCS, which can not be derived by [23], since the Hadamard matrix
of order 102 does not exist.

5 Conclusion

In this paper, we introduced a new concept called partially m-shift orthogonal comple-
mentary code. Based on partially m-shift orthogonal complementary code and CCC, we

Sequences and Their Applications (SETA) 2024 9



T. Yu, Y. Yang, A. Adhikary, Z. Zhou

Table 2: Summary of Existing Optimal ZCCSs

Ref. Based on Parameters Conditions

[9, Th. 2] GBF (M,N, 2m, 2mN/M)
M = 2k+v, N = 2k,m ≥ 3,

v ≤ m, k ≤ m− v
[10, Th. 2] GBF (M,N, 2m, 2mN/M)

M = 2k+p+1,
N = 2k+1, k + p ≤ m

[11, Th. 2] GBF
(M,M, 2m−1 + 2,

2m−2 + 2π(m−3) + 1)
M = 2n+1,m ≥ 3

[12, Th. 1] PBF (M,N, 2mM/N, 2m)
M = p · 2k+1, N = 2k+1,

m ≥ 2, p is prime

[13, Th. 1] GBF (M,N, 2m, 2mN/M) M = 2n+p, N = 2n, p ≤ m
[14, Th. 3] GBF (M,N, 2m, 2mN/M)

M = 2k+v, N = 2k,
v ≤ m, k ≤ m− v

[15, Th. 1] GBF (M,N, 2mM/N, 2m)
M = k · 2n+1, N = 2n+1,

k,m, n ∈ Z+

[16, Th. 1] GBF (M,N, γ ·M/N, γ)
M = R · 2k+1, N = 2k+1,

k ≥ 1,m ≥ 5,
γ = 5 · 2m−3, R is even

[16, Th. 3] GBF (M,M, 3 · γ, 2 · γ)
M = 2k+1, k ≥ 1,
m ≥ 5, γ = 5 · 2m−3

[17, Th. 2] EBF (M,N, qm, qmN/M)
M = qv+1, N = q,
m ≥ 2, v ≤ m

[18, Th. 4.2] EBF (M,N, qm, qmN/M)
M = qv+d, N = qd, q ≥ 2,

v ≤ m, d ≤ m− v
[21, Th. 1] GBF (M,M, 3 · 2m, 2m+1) M = 2k+1, k,m ≥ 1

[21, Th. 3] ZCP and CCC (M,M,L · 2m, Z · 2m)

(L,Z)-ZCP,

M = 2k+2, Z > L
2 ,

(2k+1, 2k+1, 2m)-CCC

[19, Th. 1]
Butson-type

Hadamard Matrices
(M,N,M,N) M,N ≥ 2

[19, Th. 2]
Optimal ZPU Matrices

and Butson-type
Hadamard Matrices

(M,N,M ·Nn, Nn+1) M,N ≥ 2, n ≥ 0

[20, Con. 1]
ZCP and

Hadamard Matrices
(M,M,L,Z)

(L,Z)-ZCP,

M = 2n+1, Z ≥ dL2 e

[22, Th.1]
Optimal ZCCS

and CCC
(M1M2, N1M2, L1L2, Z1L2)

(M2,M2, L2)-CCC
and Optimal

(M1, N1, L1, Z1)-ZCCS

[22, Th.2]
Optimal ZCCS

and CCC
(M1, N1, L1L2N1, Z1L2N1)

(N1, N1, L2)-CCC
and Optimal

(M1, N1, L1, Z1)-ZCCS

[23, Th.1]
L× L and N ×N

Orthogonal matrices
(M,N,L,NL/M) M = HL,N = HZ,Z|L

[23, Th.2]
L× L and N ×N

Orthogonal matrices
(M,N,L,Z)

M = HL,H = bNZ c,
bLZ c · (N mod Z) =

(L mod Z)bNZ c

Th. 6
CCC and partially
m-shift orthogonal

complementary code
(M1M2

m , N1M2, L1L2, Z1L2)

(M2,M2, L2)-CCC and
(M1, N1, L1, Z1)-partially

m-shift orthogonal
complementary code
satisfying the equal

sign in Eq. (2)
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presented a construction which can lead to new optimal ZCCSs with sequence lengths.
Since the proposed construction depends on the availability of the partially m-shift orthog-
onal complementary code, the properties of partially m-shift orthogonal complementary
code as well as some new constructions can be considered in the future work.
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Multiple Spectrally Null Constrained Complete

Complementary Codes of Various Lengths Over

Small Alphabet

Rajen Kumar∗, Palash Sarkar†, Prashant Kumar Srivastava‡, Sudhan Majhi §

Abstract

Complete complementary codes (CCCs) are highly valuable in the fields of infor-
mation security, radar and communication. The spectrally null constrained (SNC)
problem arises in radar and modern communication systems due to the reservation
or prohibition of specific spectrums from transmission. The literature on SNC-
CCCs is somewhat limited in comparison to the literature on traditional CCCs.
The main objective of this paper is to discover several configurations of SNC-CCCs
that possess more flexibility in their parameters. The proposed construction utilised
the existing CCCs and mutually orthogonal sequences. The proposed construction
can cover almost all lengths with the smallest alphabets {−1, 0, 1}. Further, the
idea of SNC-CCC is extended to multiple SNC-CCCs with an inter-set zero cross-
correlation zone (ZCCZ). Through the propose construction, we could control the
cross-correlation magnitude outside the ZCCZ. Consequently, the resulting codes
possess both aperiodic and periodic inter-set ZCCZ and feature a low magnitude of
cross-correlation value outside the ZCCZ.

A Golay complementary pair (GCP) indicates a pair of sequences whose sum of aperiodic
auto-correlation functions (AACFs) results in zero at nonzero time shifts. Golay uncov-
ered a sequence pair that can be used during the research of multislit spectroscopy [1,2].
GCPs are comprehensively utilised in engineering applications, particularly in radar sys-
tems and communication systems. These applications include channel estimation [3, 4],
design of the physical uplink control channel [5], non-orthogonal multiple access [6], radar
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waveform design [7], control of peak-to-average power ratio for multi-carrier communica-
tion systems [8], and more. Tseng and Liu presented the idea of a Golay complementary
set (GCS) comprising more than two sequences. The sum of the AACFs for all sequences
is zero except at zero time shift [9]. Due to their similar characteristics to GCPs, GCSs
are also utilised in several communication and radar systems [10,11]. Furthermore, GCS
has the added benefit of a greater code rate compared to GCP, in addition to its variable
length advantage [12–14].

A mutually orthogonal Golay complementary set (MOGCS) is a collection of K GCSs.
Each GCS in the MOGCS has M sequences, each of length L. Additionally, the cross-
correlation function between distinct GCSs is zero. A MOGCS is referred to as a complete
complementary code (CCC) when K is equal to M [15]. For implementing multi-antenna
or multi-user systems, it is important to consider the cross-correlation characteristics
across sets of sequences. This is particularly relevant for systems such as CCC based code
division multiple access (CDMA) and multi-input multi-output (MIMO) radar [16–19].
The idea of CCC extended to multiple CCC with an inter-set zero cross-correlation zone
(ZCCZ) [20, 21], which is similar to the Z complementary code set (ZCCS). The idea of
CCC also extended to multiple CCC with inter-set low cross-correlation, which is similar
to the Quasi complementary code set (QCCS).

In systems that use orthogonal frequency division multiplexing (OFDM), some sub-
carriers are designated as reserved and are not allowed to transmit signals [22]. For
instance, the direct current sub-carrier is specifically allocated, known as spectrally null
constrained (SNC), to prevent any discrepancies in the D/A and A/D converters during
radio frequency transmission [23]. The increasing need for OFDM or multi-carrier CDMA
sequences with spectrum null constraints, also known as non-contiguous sequences, is
primarily motivated by their potential applications in cognitive radio (CR) communica-
tions [24]. Transmission on sub-carriers not used by primary users constrains secondary
users in OFDM-based CR transmissions. The Third-Generation Partnership Project
Long-Term Evolution enhanced licenced-assisted access and the New Radio in Unlicenced
(NR-U) implemented interlaced transmission, with the null locations of the SNC sequences
being regularly distributed (although the nulls in NR-U are unevenly spaced). It is also
important to think about the spectral null constraint when using the CCC as omnidi-
rectional precoding for a rectangular array that is not all the same size. In the IEEE
P802.15.4z standard, the average power permitted in ultra-wide-band is very low. There-
fore, the sequence design will consider the inclusion of null to decrease the average power.
To summarise, several situations in sequence design require the use of null constraints.

Only a few of the conventional GCSs and CCCs take into account this limitation,
which has been addressed in [5, 23, 25–29]. Sahin and Yang extended the conventional
GCPs to address the SNC problem, as described in [5] and [26]. In [23], Zhou et al.
sequentially built the SNC-MOGCSs/SNC-GCSs using an iterative approach. They used
two sequences extracted from a GCP as the initial seed sequence and then introduced a
certain amount of zeros into these two sequences. As a result, new sequences were obtained
with a zero correlation zone. Hence, a challenging issue arises regarding the methodology
for constructing SNC-CCC. Shen et al. proposed a method for constructing SNC-CCC
using extended Boolean functions and graphs [28]. However, the parameters are only in
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the power of p when elements of code are considered from the qth root of unity and zero,
for p | q and p ≥ 2. In machine-type communication, alphabet size plays a major role
and must be minimum [30]. However, there are gaps in the SNC-CCC proposed in [28]
in terms of lengths and alphabet sizes. For example, when the alphabets are −1, 1, 0,
set size, code size and length are restricted to in the form of the power-of-two. We are
strongly motivated to include a greater range of parameters for SNC-CCC in comparison
to existing literature. The proposed construction not only provides SNC-CCCs with new
parameters but also provides flexibility in the alphabet and the length of the constituent
sequences. It may be noted that codes are referred to as CCC, when it is a traditional
CCC, and codes with nulls are referred to as SNC-CCC.

In the proposed construction, we use existing CCCs and mutually orthogonal sequences
(MOSs) as seeds. By performing the concatenation operation in a specific way, as de-
scribed in Section 2, we obtain multiple SNC-CCCs over a small alphabet. It may be
noted that our smallest alphabet is {−1, 0, 1}, on which the proposed construction is ca-
pable of generating almost all possible lengths. The proposed multiple SNC-CCCs also
have a ZCCZ property with respect to both periodic and aperiodic correlation. With
these properties, the obtained code set is useful for multi-cell MC-CDMA systems, where
the users inside a cell enjoy interference-free communication due to the ideal correlation
property of a SNC-CCC and the users from two different cells also enjoy interference-free
communication within the ZCCZ. Our study also revealed that we can control non-zero
inter-set cross-correlation magnitude values outside the ZCCZ. We consider this an op-
portunity to minimise the upper bound for inter-set cross-correlation magnitude values of
the proposed multiple SNC-CCCs.

We structure the subsequent sections of the paper as follows: Section 1 establishes
appropriate notations and definitions. Section 2 introduces new constructions for SNC-
CCC and multiple SNC-CCC and provides an example to illustrate this. Further, we
explain the ZCCZ width of the multiple SNC-CCC and conclude with the low inter-set
cross-correlation value. In Section 3, a comparison has been given with existing literature.
Based on the proposed work, we have highlighted three problems that we may consider
as our future work in Section 4. The paper is concluded in Section 5.

1 Preliminaries

Before anything starts, let us specify the notation and definitions that will be utilised
consistently throughout this paper.

Definition 1. Let a = (a1, a2, . . . , aL) and b = (b1, b2, . . . , bL) be two complex-valued
sequences of length L and τ be an integer. Define

C(a,b)(τ) =





∑L−τ
i=1 ai+τb

∗
i , 0 ≤ τ < L,∑L+τ

i=1 aib
∗
i−τ , −L < τ < 0,

0, otherwise,

(1)

is called ACCF of a and b at time shift τ , where (·)∗ represents complex conjugation.
When a = b, C(a,b)(τ) is called AACF of a and is denoted by C(a)(τ). Further, periodic
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cross-correlation function (PCCF) of a and b at time shift τ is defined as

Θ(a,b)(τ) = C(a,b)(τ) + C(a,b)(τ − L). (2)

Definition 2. Let C = {Ck : 1 ≤ k ≤M} be a set of M matrices (codes), each having
order M × L. And Ck is defined as

Ck =




ck1
ck2
...

ckM




M×L

, (3)

where ckj (1 ≤ j ≤ M, 1 ≤ k ≤ K) is the j-th row sequence of Ck.Then ACCF between
Ck1 and Ck2 is defined by

C (Ck1 , Ck2) (τ) =
M∑

ν=1

C
(
ck1ν , c

k2
ν

)
(τ). (4)

When Ck1 = Ck2 , C(Ck1 , Ck2)(τ) is called AACF of Ck1 and is denoted by C(Ck1)(τ).
Similarly, the PCCF of between Ck1 and Ck2 is defined by

Θ (Ck1 , Ck2) (τ) =
M∑

ν=1

Θ
(
ck1ν , c

k2
ν

)
(τ). (5)

Definition 3. Let a = (a1, a2, . . . , aL) be any complex-valued sequence and N = {x ∈
N : ax = 0} is non-empty set, a is called a SNC sequence. A CCC is called an SNC-CCC
if there is at least one SNC sequence in the CCC [28].

Definition 4. Let C = {Ck : 1 ≤ k ≤M} be a set of M codes of order M × L and it
follows

C(Ck1 , Ck2)(τ) =

{
ML− ϵ k1 = k2, τ = 0

0 otherwise,
(6)

where, ϵ is the number of zeros in a code. When ϵ = 0, it is referred to as traditional
aperiodic CCC and for ϵ ≥ 1, we refer to it as aperiodic SNC-CCC. It is trivial that ape-
riodic CCC also satisfies the ideal periodic correlation properties. Therefore, an aperiodic
CCC can also be called a periodic CCC. To avoid possible confusion between the terms
aperiodic and periodic CCC, we will exclusively use the term CCC throughout this paper.

Definition 5. Let C = {Cj : 1 ≤ j ≤ P} be a collection of P many (M,L)-CCCs, i.e.,
Cj =

{
Cj

k : 1 ≤ k ≤M
}
, where 1 ≤ j ≤ P, P ≥ 2. If any two codes from different CCCs

Cj1 and Cj2 with 1 ≤ j1 ̸= j2 ≤ P follows

C(Cj1
k1
, Cj2

k2
)(τ) = 0, |τ | < ZA,

δA = max
{
|C(Cj1

k1
, Cj2

k2
)(τ)| : j1 ̸= j2, 1 ≤ k1, k2 ≤M,Z ≤ |τ | ≤ L− 1

}
,
(7)
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where 1 ≤ k1, k2 ≤M , then we denote C as aperiodic (P,M,L, ZA, δA)-CCCs. Similarly,

Θ(Cj1
k1
, Cj2

k2
)(τ) = 0, |τ | < ZP ,

δP = max
{
|Θ(Cj1

k1
, Cj1

k2
)(τ)| : j1 ̸= j2, 1 ≤ k1, k2 ≤M,Z ≤ |τ | ≤ L− 1

}
,
(8)

where 1 ≤ k1, k2 ≤M , then we denote C as periodic (P,M,L, ZP , δP )-CCCs.

Let a and b be two complex sequences of identical length and said to be orthogonal
if the dot product ⟨a,b⟩ is equal to 0. We refer to the set of sequences as MOSs when
the number of sequences exceeds two and the dot product of any two sequences is zero.
A construction of P many MOSs with length P is suggested in [31].

2 Proposed Construction

In this section, we describe our main method of construction. First, we provide a new
method, which involves the concatenation of zeros and matrices with some scalar multipli-
cations. Scalars must be selected meticulously to ensure they do not impact the elements
of matrices following multiplication.

Construction 6. Let C1, C2, . . . , CP be a set of M × L matrices and b = (b1, b2, . . . , bP )
be a sequence of length P . For K > P , then we define

RP(n)(C1, C2, . . . , CP ;b) =
[
0n1 ∥ b1C1 ∥ 0n2 ∥ b2C2 ∥ 0n3 ∥ · · · ∥ 0nP ∥ bPCP ∥ 0nP+1

]
,
(9)

where, P(n) = (n1, n2, . . . , nP+1), partition of n with P + 1 non-negative integers, n =
n1 + n2 + · · · + nP+1, 0n1 represents a zero matrix of size M × n1 and ∥ represents
concatenation of two matrices.

First we consider a (M,L)-CCC, P ≤ M , such that P | M and MOSs of length P .
Now, for any positive integers n, we take a partition with P + 1 non-negative integers.
The partition of n decides the position and numbers of nulls in the proposed codes.

Theorem 7. Let C be a (M,L)-CCC, P |M , b1,b2, . . . ,bP be MOSs of length P . Now,
define

BνP+µ = RP(n)(CνP+1, CνP+2, . . . , C(ν+1)P ;b
µ), (10)

for 0 ≤ ν < M
P
, 1 ≤ µ ≤ P . Then B = {B1, B2, . . . , BM} is a (M,PL+ n) SNC-CCC.

Since the alphabets of CCC and MOSs are identical, the resulting SNC-CCCs like-
wise possess the same alphabets, with an additional zero. The position of nulls can be
determined by the partition of n, which is employed in the construction.

Example 8. Let

C1 =




+++
++−
−+−
−+−


 , C2 =




+−+
++−
−−+
+++


 , C3 =




+−−
+++
−+−
+−−


 and C4 =




+−−
+−+
+++
−++


 ,
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be a (4, 3)-CCC from [32], where + and − represent 1 and −1, respectively. Now, assume
P = 2, b1 = (1, 1), b2 = (1,−1), n1 = 0, n2 = 3 and n3 = 0. Then from Theorem 7,

B1 =




+++000 +−+
++−000 + +−
++−000−−+
−+−000 + ++


 , B2 =




+++000−+−
++−000−−+
++−000 + +−
−+−000−−−


 ,

B3 =




+−−000 +−−
+++000 +−+
−+−000 + ++
+−−000−++


 , and B4 =




+−−000−++
+++000−+−
−+−000−−−
+−−000 +−−


 ,

(11)

is a (4, 9) SNC-CCC.

Remark 9. In the Example 8, there is the freedom to decide on various values n1, n2 and
n3.

Let π1, π2, . . . be permutations of {1, 2, . . . ,M} such that

πj1(i1P + µ) ̸= πj2(i2P + µ), (12)

for j1 ̸= j2, 0 ≤ i1, i2 <
M
P

and 1 ≤ µ < P , we have P many such permutations.

Theorem 10. Let C be a (M,L)-CCC, P | M , b1,b2, . . . ,bP be MOSs of length P and
π0, π1, . . . , πP−1 be permutations as defined in (12). Now, define

BjM+νP+µ = RP(n)(Cπj(νP+1), Cπj(νP+2), . . . , Cπj((ν+1)P );b
µ), (13)

for 0 ≤ ν < M
P
, 1 ≤ µ ≤ P and 0 ≤ j ≤ P − 1. Then, each Bj = {BjM+1, BjM+2, . . . ,

B(j+1)M} is a (M,PL + n) SNC-CCC and by combining all SNC-CCCs it becomes a
multiple CCCs with inter-set ZCCZ.

Remark 11. The elements in the partition n can be used to obtain the ZCCZ width of
multiple SNC-CCCs. λ+ L will be the periodic and aperiodic ZCCZ, where

λ = min
2≤i≤P

{ni}. (14)

Now, we present a method to decrease the magnitude of the cross-correlation value
outside the ZCCZ.

Corollary 12. Let P(n) be partition of n i.e., n = n1+n2+ . . .+nP+2 such that ni1 ̸= ni2

for 2 ≤ i1, i2 ≤ P in Theorem 10 then δA become LM . Therefore, we have a aperiodic
(P,M,PL + n, L + λ, LM)-CCCs. Further, if ni1 ̸= ni2 mod L for 2 ≤ i1, i2 ≤ P

in Theorem 10 then δP become LM . This type of P(n) is possible for n ≥ P (P−1)
2

.
Therefore, we have a periodic (P,M,PL+ n, L, LM)-CCCs.
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Let π1, π2, . . . , πP be permutations of {1, 2, . . . ,M} as define in (12), further for any
two permutation πj1 and πj2 , when

πj1(i1P + µ1) =πj2(i2P + µ2), then

πj1(i1P + µ1 + α) ̸=πj2(i2P + µ2 + α),
(15)

for 1 ≤ µ1 + α, µ2 + α ≤ P .

Corollary 13. Theorem 10 provides multiple SNC-CCCs such that cross-correlation is
non-zero at only one time shift and the value is equal to LM when permutations satisfy
(15). Therefore, we have both aperiodic (P,M,PL + n, L + λ, LM)-CCCs and periodic
(P,M,PL+ n, L, LM)-CCCs.

We are providing one more example to illustrate the multiple SNC-CCCs with ZCCZ.

Example 14. In Example 8, we consider as identity permutation (π1 = (1, 2, 3, 4)) and
construct a SNC-CCC. As P = 2, we have second permutation π2 = (4, 1, 2, 3) such that
π1 and π2 satisfies (15). With the same C, b1 and b2, we have one CCC as given in
Example 8 and the other CCC is as given below

B5 =




+−−000 + ++
+−+000 + +−
+++000−+−
−++000−+−


 , B6 =




+−−000−−−
+−+000−−+
+++000 +−+
−++000 +−+


 ,

B7 =




+−+000 +−−
++−000 + ++
−−+000−+−
+++000 +−−


 , and B8 =




+−+000−++
++−000−−−
−−+000 +−+
+++000−++


 .

(16)

Combining B1, B2, . . . , B8 is a multiple SNC-CCCs with aperiodic ZCCZ width is 6.

Choosing a set of permutations plays a role in a low correlation magnitude value. To
ensure such permutation exists, we are providing an example. Let M = 4, P = 4 then
π1 = (1, 2, 3, 4), π2 = (2, 3, 4, 1), π3 = (3, 4, 1, 2) and π4 = (4, 1, 2, 3), satisfy (12) but not
(15). But π1 = (1, 2, 3, 4), π2 = (4, 3, 2, 1), π3 = (3, 1, 4, 2) and π4 = (2, 4, 1, 3) satisfies
(15).

3 Comparison

3.1 Comparison with [26] and [33]

[26] and [33] generated SNC-GCS via generalised Boolean functions and generated pa-
rameters closely multiple of 2. Furthermore, their findings are restricted to SNC-GCSs
and do not extend to SNC-CCCs. However, in the proposed construction, every code is
SNC-GCSs, which are not restricted to a multiple of 2 only.
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3.2 Comparision with [23]

The method in [23] implements an iterative strategy using an existing CCC to generate
SNC-MOGCSs. Meanwhile, the proposed construction provides SNC-CCCs.

3.3 Comparision with [28]

SNC-CCCs has been constructed using an extended Boolean function in [28] with diver-
sified parameters. Notably, these parameters consistently involve powers of p for p ≥ 2,
where the elements are obtained from the qth root of unity and zero for (p | q). The given
example demonstrates that the proposed construction offers more flexibility.

4 Future directions

Based on our contribution in this paper, we would like to introduce the following future
works:

1. In Corollary 13, the set permutation used satisfying (15). However, constructing
a set of permutations satisfying (15) is not straightforward. We consider it to be
our future research problem.

2. In the current literature, we do not have sufficient information on the optimal col-
lection of multiple SNC-CCCs in relation to their maximum magnitude of inter-set
cross-correlation value. This limitation leads to a future direction on deriving a
lower correlation bound for multiple collections of SNC-CCCs.

3. Besides, as we can see in our proposed construction of multiple SNC-CCCs, we also
have a ZCCZ, which leads us to the natural question, “What will be the relationship
between the ZCCZ width and the other parameters of our multiple collection of
SNC-CCCs?”

5 Conclusion

In this paper, with the help of MOSs, we developed a method to construct SNC-CCCs,
with flexible parameters. The proposed construction can cover almost all the possible
lengths over the alphabet {−1, 0, 1}. Further, we have extended the construction to
produce multiple SNC-CCCs with inter-set ZCCZ. The proposed construction includes
a wider range of parameters in relation to length and alphabet size. Furthermore, we
have shown that restriction can be made on the highest cross-correlation magnitude value
outside the ZCCZ width, assuring that the multiple SNC-CCCs possess not only inter-set
ZCCZ width but also exhibit a low cross-correlation magnitude value outside the ZCCZ
width.
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6 Proof of Theorems

In this section we complete the proof of Theorem 7 and Theorem 10.

Proof of Theorem 7. We complete the proof in two parts, one is for AACF and second is
for ACCF values.

Case 1. Let 1 ≤ t1 = ν1P + µ1 ≤ M and τ ̸= 0, then C(Bt1)(τ) is written as linear
sum of AACF of a code at non-zero time shift and ACCF between two different codes
from {Cν1+1, Cν1+2, . . . , Cν1+P}, which results C(Bt1)(τ) = 0 for any τ except at τ = 0.

Case 2. Consider two distinct integer n1 = ν1P + µ1 and n2 = ν2P + µ2 such that
1 ≤ ν1P + µ1 ̸= ν2P + µ2 ≤ M , for 0 ≤ ν < M

P
, 1 ≤ µ ≤ P . Again, we consider two

subcases on the basis of ν1, ν2 to complete the proof.
Subcase (i): ν1 = ν2. Since bν1 is orthogonal to bν2 , it implies that ⟨bν1 ,bν2⟩ = 0.

Therefore,

C(Bt1 , Bt2)(0) = bν1 · bν2∗
P∑

i=1

C(Cν1+i)(0) = 0. (17)

Now, assume τ ̸= 0, then C(Bt1 , Bt2)(τ) is a linear sum of ACCF between two different
codes from {Cν1+1, Cν1+2, . . . , Cν1+P}, which results C(Bt1 , Bt2)(τ) = 0.

Subcase (ii): ν1 ̸= ν2, then C(Bt1 , Bt2)(τ) is written as linear sum of AACF of a code at
non-zero time shift and ACCF between two different codes from {Cν1+1, Cν1+2, . . . , Cν1+P ,
Cν2+1, Cν2+2, . . . , Cν2+P}, which results C(Bt1 , Bt2)(τ) = 0 for any τ .

From the above cases the proof is complete.

Proof of Theorem 10. Each Bj is a (M,PL + n) SNC-CCC, for 1 ≤ j ≤ P − 1. Now,
consider Bj1

t1 ∈ Bj1 and Bj2
t2 ∈ Bj2 . The value of C(Bj1

t1 , B
j2
t2 )(τ) become non-zero when it

include AACF of any code from {C1, C2, . . . , CM}, that happens only for τ = L + ni for
some 2 ≤ i ≤ P . There for C(Bj1

t1 , B
j2
t2 )(τ) = 0 for |τ | < L + λ, where λ = min{ni : 2 ≤

i ≤ P}. This completes the proof.
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Abstract

The Z-complementary array pair (ZCAP) is a two-dimensional extension of the
Z-complementary sequence pair, applied to radar waveform design, spatial synchro-
nization, and two-dimensional multi-carrier CDMA systems. We suggest optimal
binary Type-I and Type-II ZCAPs using concatenation, interleaving, and iteration
techniques to further ZCAP research. The zero correlation zone (ZCZ) ratio of the
constructed ZCAPs approaches 1. Our constructions provide new design methods
for ZCAPs and improve the flexibility and adaptability of ZCAP parameters beyond
the current literature.

Key words:Z-complementary array pair, Z-complementary sequence pair, zero
correlation zone.

1 Introduction

In 1951, while investigating an optical problem in multislit spectroscopy, M.J.E. Golay
introduced the concept of complementary sequence pairs, i.e., pairs of sequences with zero
aperiodic autocorrelation and zero in each nonzero time shift, known as Golay comple-
mentary pairs (GCPs) [1]. However, available lengths for GCPs are very limited. For
instance, the length of a binary GCP exists exclusively in the form2α10β26γ[2], where α,
β, and γ are nonnegative integers. To obtain flexible sequence length, Fan et al. intro-
duced the concept of ”zero correlation zone (ZCZ)” in 2007 [3], which defines an aperiodic
Z-complementary pair (ZCP) by specifying that the aperiodic autocorrelation sum of se-
quence pairs is zero only in a segment of intervals. The Golay complementary array pair
(GCAP) is a two-dimensional extended form of GCP [4], with row length and column

∗The authors are supported in part by the Natural Science Foundation of Hebei Province under
Grant F2023203066, and in part by the Key Laboratory Project of Hebei Province, China under Grant
202250701010046.
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length of 2α10β26γ. The Z-complementary array pair (ZCAP) as the extension of GCAP
can provide flexible row and column lengths [5], which can be applied to two-dimensional
radars [6], two-dimensional synchronization [7], and two-dimensional multi-carrier CDMA
systems [8]. ZCAPs possess the two-dimensional ZCZ property where in the sum of the
aperiodic autocorrelation functions of consistent arrays is zero in a specific area. Similar
to ZCPs, ZCAPs have an extremely wide parameter range and are divided into Type-I
ZCAPs and Type-II ZCAPs according to different positions of ZCZ in the array [9].

In contrast to the extensively studied ZCPs over many years [10-21], there are com-
paratively fewer research methods and results available for the ZCAPs. In general,
ZCAP construction approaches include the direct methods and the indirect methods.
Two-dimensional Boolean functions are an effective tool for directly generating ZCAPs.
By designing different kinds of two-dimensional Boolean functions, Pai obtained ZCAPs

with array size 2n ×
m−1∑
α=t+1

dα2
α−1 + 2v[22], Abhishek Roy constructed ZCAPs with ar-

ray size (2m1−1 + 2n+1) × (2m2 + 4)[23], and Zhang constructed ZCAPs with array size
14 · 2n−4 × 2m[24]. Accordingly, the direct methods yield limited results in terms of ar-
ray size and ZCZ size. To enlarge the parameter range, the indirect methods play a key
role. Based on the existing ZCPs and ZCAPs, Pai et al. utilized the Kronecker prod-
uct, concatenation operation, and interleaving operation to obtain Type-I ZCAPs with
varying array sizes. Besides, as Type-II ZCAP can suppress asynchronous interference
in MC-CDMA system, Pai et al. also proposed a design for Type-II ZCAPs, but the
parameters remained constrained[9]. Consequently, in this paper, we generate four class
of two-dimensional ZCAPs with new parameters, including optimal Type-I ZCAPs and
Type-II ZCAPs by employing concatenation, interleaving, and interation techniques.

The rest of the paper is organized as follows. In Section 2, some basic notations and
definitions are provided. In Section 3, several construction methods of Type-I ZCAPs,
including optimal ZCAPs, are presented using the concatenation, Kronecker product, and
interleaving methods, and the construction results of various parameters are obtained. In
Section 4, Type-II ZCAPs are designed based on the iteration method. In Section 5,
the parameters of the constructed ZCAPs are analyzed and compared to the literature.
Section 6 concludes this paper.

2 Preliminaries

Let C be a binary array of size L1×L2, C = (ci,j, 0 ≤ i < L1, 0 ≤ j < L2), where (ci,j) ∈
{+1,−1}. For convenience, let ” + ” and ”− ” denote “1” and “−1”, respectively.

• x∗ stands for the conjugate of the complex number x.

• (·)T denotes the transposition of (·), where (·) can represent a sequence or an array.

• Let D = (di,j, 0 ≤ i < L1, 0 ≤ j < L2) be also an array of size L1 × L2. cj and dj
denote the respective column vectors of arrays C and D . The concatenation operation
of arrays C and D is expressed as

C ∥ D = (c0, c1, . . . , cL2−1, d0, d1, . . . , dL2−1) , (1)

Sequences and Their Applications (SETA) 2024 2
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where ”∥” stands for concatenation operator.
• ⊙ represents the interleaving operation, and the interleaving of arrays C and D is

expressed as follows

C ⊙D = (c0, d0, c1, d1 . . . , cL2−1, dL2−1) , (2)

where cj and dj denote the column vectors of arrays C and D , respectively.

Definition 1. The two-dimensional aperiodic cross-correlation function (ACCF) of arrays
C and D at the shift (u1, u2) is defined as

ρ(C ,D ;u1, u2) =

L1−1−u1∑

i=0

L2−1−u2∑

i=0

ci,jdi+u1,j+u2 , (3)

where 0 ≤ u1 < L1, 0 ≤ u2 < L2. When C = D , ρ(C ,C ;u1, u2) is called the aperiodic
autocorrelation function (AACF), denoted by ρ(C ;u1, u2). If L1 = 1, the array C be-
comes a sequence C = (cj, j = 0, 1, . . . , L2 − 1), then the AACF of the sequence C can
be expressed as

ρ(C ;u) =

L2−1−u∑

j=0

cjcj+u, (4)

Definition 2. [3] If a pair of sequences a and b of length L satisfies

ρ (a ;u) + ρ (b;u) =

{
2L, u = 0
0,−Z < u < Z, u ̸= 0

(5)

where Z represents the ZCZ width, then the sequence pair (a , b) is called a Z-complementary
pairs, denoted as (L,Z)− ZCP.

Definition 3. [3] If two (L,Z)− ZCPs (a , b) and (c,d) satisfy

ρ (a, c;u) + ρ (b, d;u) = 0, where 0 ≤ u < Z (6)

then (a , b) and (c,d) are said to be mates to each other.

Definition 4. [4] If the AACF sum of arrays C and D of size L1 × L2 satisfies

ρ (C ;u1, u2) + ρ (D ;u1, u2) =

{
2L1L2, (u1, u2) = (0, 0)
0, 0 ≤ |u1| < Z1, 0 ≤ |u2| < Z2, (u1, u2) ̸= (0, 0)

(7)

then (C ,D) is called a Type-I ZCZ complementary array pair (ZCAP), denoted as Type-I
((L1, L2), (Z1, Z2))− ZCAP.

In particular, the proof of ZCAPs in the following theorems of this paper is given only
for u1 ≥ 0 and u2 ≥ 0. The proof process for u1 ≤ 0 and u2 ≤ 0 is similar, so it is omitted.

Definition 5. [5] If the AACF sum of arrays C and D of size L1 × L2 satisfies

ρ (C ;u1, u2) + ρ (D ;u1, u2) = 0, L1 − Z1 < |u1| < L1 or L2 − Z2 < |u2| < L2 (8)

then (C ,D) is referred to as a Type-II ((L1, L2) (Z1, Z2))− ZCAP.
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Definition 6. [22] The ZCZ ratio of ((L1, L2) (Z1, Z2))− ZCAP is defined as

ZCZratio =
Z1Z2

L1L2

(9)

Definition 7. [10] A binary odd-length (L,Z) − ZCP (a , b) is said to be Z-optimal if
the parameters satisfy Z = L+1

2
, and a binary even-length (L,Z) − ZCP is said to be

Z-optimal if the parameters satisfy Z = L− 2.

Definition 8. [9] Let (A,B) be a binary ((L1, L2) (Z1, Z2)) − ZCAP, where L1 and L2

are odd. If Z1Z2 =
(
L1+1

2

) (
L2+1

2

)
, then (A,B) is said to be Z-optimal. For an binary

((L3, L4) (Z3, Z4))− ZCAP, if one of its dimensions is odd and the other is even, then it
is called an optimal ZCAP when Z1Z2 ≤ max ((L3 − 1)L4, L3 (L4 − 1)).

3 Construction of Type-I ZCAPs

In this section, two classes of ZCAPs are constructed by the concatenation operation and
interleaving methods based ZCPs and ZCAPs. By utilizing the optimal odd-length ZCP
as the base sequence in Theorem 1, we can optimize the resulting two-dimensional ZCAP.

Theorem 1. Let (a, b) be an (L,Z)− ZCP and (c,d) =
(←−
b ,−←−a

)
be a mate of (a, b),

where ←−a and
←−
b represents the reverse of a and b, respectively. The array pairs (M,N)

are constructed by the following operations.
I. M = (aT ∥ cT ∥ aT ), N = (bT ∥ dT ∥ bT );
II. M =

(
aT ∥ aT ∥ −aT ∥ cT ∥ −aT

)
,N =

(
bT ∥ bT ∥ −bT ∥ dT ∥ −bT

)
;

III.M =
(
aT ∥ aT ∥ cT ∥ −cT ∥ aT ∥ −cT ∥ −aT

)
,

N =
(
bT ∥ bT ∥ dT ∥ −dT ∥ bT ∥ −dT ∥ −bT

)
;

IV.M =
(
aT ∥ aT ∥ cT ∥ aT ∥ −aT ∥ −cT ∥ aT ∥ −cT ∥ −aT

)
,

N =
(
bT ∥ bT ∥ dT ∥ bT ∥ −bT ∥ −dT ∥ bT ∥ −dT ∥ −bT

)
;

V.M =
(
aT ∥ aT ∥ cT ∥ aT ∥ cT ∥ −cT ∥ aT ∥ −cT ∥ −aT ∥ cT ∥ aT

)
,

N =
(
bT ∥ bT ∥ dT ∥ bT ∥ dT ∥ −dT ∥ bT ∥ −dT ∥ −bT ∥ dT ∥ bT

)
;

VI.M =
(
aT ∥ aT ∥ aT ∥ aT ∥ −aT ∥ aT ∥ −aT ∥ cT ∥ cT ∥ −cT ∥ −cT ∥ cT ∥ −aT

)
,

N =
(
bT ∥ bT ∥ bT ∥ bT ∥ −bT ∥ −bT ∥ −bT ∥ dT ∥ dT ∥ −dT ∥ dT ∥ dT ∥ −bT

)
.

The array pairs are ((L, 3) , (Z, 2))−ZCAP, ((L, 5) , (Z, 3))−ZCAP, ((L, 7) , (Z, 4))−
ZCAP, ((L, 9) , (Z, 5)) − ZCAP, ((L, 11) , (Z, 6)) − ZCAP, ((L, 13) , (Z, 7)) − ZCAP re-
spectively.

Proof. Initially, we illustrate the conclusion with Construction I as an example. For
0 ≤ u1 < Z, consider the three cases below.

1) For u2 = 0,
ρ (M ;u1, 0) = 2ρ (a ;u1) + ρ (c;u1) , (10)

ρ (N ;u1, 0) = 2ρ (b;u1) + ρ (d ;u1) , (11)

we have

ρ (M ;u1, 0) + ρ (N ;u1, 0) = 2 (ρ (a ;u1) + ρ (b;u1)) + ρ (c;u1) + ρ (d ;u1) = 0 (12)
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2) For u2 = 1,

ρ (M ;u1, 1) = ρ (a , c;u1) + ρ (c,a ;u1) , (13)

ρ (N ;u1, 1) = ρ (b,d ;u1) + ρ (d , b;u1) , (14)

Since (a , b) and (c,d) are mates to each other, we have

ρ (M ;u1, 1) + ρ (N ;u1, 1) = 0 (15)

3) For u2 = 2,

ρ (M ;u1, 2) = ρ (a ;u1) , (16)

ρ (N ;u1, 2) = ρ (c;u1) , (17)

When u1 = 0, we have

ρ (M ; 0, 2) + ρ (N ; 0, 2) = 2L. (18)

From the above, it is clear that (M ,N ) is an ((L, 3) , (Z, 2)) − ZCAP. The proof
processes of other constructions are comparable to Construction I, so we omitted them.

Remark 1. If (a , b) is an odd-length Z-optimal ZCP, then by Definition 7 Z = L+1
2

holds. To verify the optimality of the ZCAPs, we incorporate the ZCAP parameters into
the equation Z1Z2 =

(
L1+1

2

) (
L2+1

2

)
in Definition 8 to calculate them independently, and

it can be observed that the ZCAPs produced by Theorem 1 are Z-optimal, these optimal
ZCAPs are not mentioned in the previous literature. In recent years, researchers have
investigated and produced abundant results on odd-length Z-optimal ZCPs [10], which
facilitates the generation of odd-dimension Z-optimal ZCAPs using our methods.

Example 1. Take a Z-optimal (3, 2) − ZCP (a , b) = (+ + +,+−+), then the mate
of (a , b) is (c,d) = (+−+,−−−). By Construction I, we can obtain that

M =
(
aT ∥ cT ∥ aT

)
=
(

+++
+−+
+++

)
and N =

(
bT ∥ dT ∥ bT

)
=
(

+−+
−−−
+−+

)
. The AACF

sum of M and N is

[
2 0 6 0 2
0 0 0 0 0
6 0 18 0 6
0 0 0 0 0
2 0 6 0 2

]
, so (M ,N ) is a ((3, 3) , (2, 2))−ZCAP. Since Z1Z2 =

(
L1+1

2

) (
L2+1

2

)
= 4, according to Definition 8, then (M ,N ) is an optimal ZCAP.

Theorem 2. Let (A,B) be an ((L1, L2) , (Z1, Z2)) − ZCAP, then the two operations on
A and B are performed as below.

Construction I (Interleaving):

M1 = (A⊙B) = (UA,1UB,1UA,2UB,2 · · ·UA,L2UB,L2) , (19)

N1 = (A⊙ (−B)) = (UA,1 (−UB,1)UA,2 (−UB,2) · · ·UA,L2 (−UB,L2)) , (20)
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or

M1 =




A
⊙
B


 =




VA,1

VB,1

VA,2

VB,2

...
VA,L1
VB,L1



,N1 =




A
⊙
−B


 =




VA,1

−VB,1

VA,2

−VB,2

...
VA,L1
−VB,L1




(21)

where UA,r and UB,r denote the rth column of the arrays A and B, respectively, and VA,r

and VB,r denote the rth row of the arrays A and B , respectively, then (M1, N1) is the
(L1, 2L2) , (Z1, 2Z2)− ZCAP or (2L1, L2) , (2Z1, Z2)− ZCAP .

Construction II (Iteration):

Let
(
M1,N1

)
= ((A⊙B) , (A⊙−B)) and

(
M1,N1

)
=






A
⊙
B


 ,




A
⊙
−B




.

Take
(
M1,N1

)
and

(
M1,N1

)
as seeds for subsequent interleaving iteration operations,

the interleaving iteration expressions are as follows,

Mk = Mk−1 ⊙Nk−1,Nk = Mk−1 ⊙
(
−Nk−1) . (22)

Mk =
(
Mk−1 ⊙Nk−1

)
,Nk =

(
Mk−1 ⊙−Nk−1

)
. (23)

Then,
(
Mk,Nk

)
obtained after k interleaving iterations is a

((
L1, 2

kL2

)
,
(
Z1, 2

kZ2

))
−

ZCAP , and
(
Mk,Nk

)
is a

((
2kL1, L2

)
,
(
2kZ1, Z2

))
− ZCAP .

Proof. For Construction I in Theorem 2, take the column interleaving method as an
example, then M 1 = (A⊙B) ,N 1 = (A⊙ (−B)), when 0 ≤ u1 < L1, 0 ≤ u2 < L2, we
can obtain the following equations.

ρ
(
M 1;u1, 2u2

)
= ρ (A;u1, u2) + ρ (B ;u1, u2) , (24)

ρ
(
N 1;u1, 2u2

)
= ρ (A;u1, u2) + ρ (B ;u1, u2) , (25)

ρ
(
M 1;u1, 2u2 + 1

)
= ρ (A,B ;u1, u2) + ρ (B ,A;u1, u2 + 1) , (26)

ρ
(
N 1;u1, 2u2 + 1

)
= −ρ (A,B ;u1, u2)− ρ (B ,A;u1, u2 + 1) . (27)

According to Definition 4, we can get

ρ
(
M 1;u1, 2u2

)
+ ρ

(
N 1;u1, 2u2

)
= 2 (ρ (A;u1, u2) + ρ (B ;u1, u2)) = 0, (28)

ρ
(
M 1;u1, 2u2 + 1

)
+ ρ

(
N 1;u1, 2u2 + 1

)
= 0, (29)

Let 0 < t2 < 2Z2, when 0 < u1 < Z1, 0 < t2 < 2Z2,

ρ
(
M 1;u1, t2

)
+ ρ

(
N 1;u1, t2

)
= 0. (30)

Therefore
(
M 1,N 1

)
is ((L1, 2L2) , (Z1, 2Z2))−ZCAP. The proof of the row interleav-

ing is similar to that of the column interleaving, so it is omitted. Moreover, Construction
II’s proof procedure of is analogous to that of Construction I, so it is omitted.
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Figure 1: The ACCF sum of (M 1, N 1) Figure 2: The ACCF sum of (M 2, N 2)

Example 2. (A,B) =
((

+++
+−+
+++

)
,
(

+−+
−−−
+−+

))
is a ((3, 3) , (2, 2)) − ZCAP, then by Con-

struction I, we can get M 1 = (A⊙B) =
(

+++−++
+−−−+−
+++−++

)
, N 1 = (A⊙−B) =

(
+−+++−
++−+++
+−+++−

)
.

Take M 2 =




M 1

⊙
N 1


 =




+++−++
+−+++−
+−−−+−
++−+++
+++−++
+−+++−


, N 2 =




M 1

⊙
−N 1


 =




+++−++
−+−−−+
+−−−+−
−−+−−−
+++−++
−+−−−+


, the AACF

sum of
(
M 1,N 1

)
is shown in Figure 1 and the AACF sum of

(
M 2,N 2

)
is shown in

Figure 2, so
(
M 1,N 1

)
is a ((3, 6) (2, 4))− ZCAP,

(
M 2,N 2

)
is a ((6, 6) (4, 4))− ZCAP.

4 Constructions of Type-II ZCAPs

There are very few Type-II ZCAP constructions in the existing literature. Type-II ZCAPs
were achieved by using one-dimensional Type-II ZCP for the Kronecker product and
concatenation operation in [9]. However, how to obtain Type-II ZCAP with flexible size
is still an open question. In this section, we first use two arbitrary arrays with the same row
number to construct a class of Type-II ZCAPs by concatenation operation. Subsequently,
we extend the ZCAP parameters by iteration operation.

Theorem 3. Let A be an array of size L×N1 and B be an array of size L×N2. Perform
the following concatenation operation on A and B,

C0 = A ∥ B,D0 = A ∥ −B, (31)

then the array pair (C0, D0) is a Type-II ((L,N1 +N2) (L,min(N1, N2) + 1))− ZCAP.

Proof. Let us discuss the following two cases for 0 < u1 < L. Case 1: When N1 ≤ N2,
the following three intervals are discussed: For 0 < u2 ≤ N1, we have

ρ(C0;u1, u2) = ρ(A;u1, u2) + ρ(B;u1, u2) + ρ(A,B;u1, N1 − u2), (32)

ρ(D0;u1, u2) = ρ(A;u1, u2) + ρ(B;u1, u2)− ρ(A,B;u1, N1 − u2), (33)

thus,

ρ(C0;u1, u2) + ρ(D0;u1, u2) = 2 (ρ(A;u1, u2) + ρ(B;u1, u2)) (34)

For N1 < u2 ≤ N2,

ρ(C0;u1, u2) = ρ(B;u1, u2) + ρ(A,B;u1, u2 −N1), (35)

ρ(D0;u1, u2) = ρ(B;u1, u2)− ρ(A,B;u1, u2 −N1) (36)

then

ρ(C0;u1, u2) + ρ(D0;u1, u2) = 2ρ(B;u1, u2). (37)
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Figure 3: The ACCF sum of (C 0, D0)

For N2 < u2 ≤ N1 +N2,

ρ(C0;u1, u2) + ρ(D0;u1, u2) = ρ(A,B;u1, u2 −N2)− ρ(A,B;u1, u2 −N2) = 0 (38)

To sum up, when N1 ≤ N2, we have

ρ(C0;u1, u2) + ρ(D0;u1, u2) =





2 (ρ(A;u1, u2) + ρ(B;u1, u2)) ,0 < u2 ≤ N1,
2ρ(B;u1, u2),N1 < u2 ≤ N2,
0,N2 < u2 ≤ N1 +N2.

(39)

Therefore, (C0, D0) is a Type- II ((L,N1 +N2) (L,N1 + 1))− ZCAP.

Case 2: When N1 > N2, for 0 < u2 ≤ N1, we have

ρ(C0;u1, u2) = ρ(A;u1, u2) + ρ(B;u1, u2) + ρ(A,B;u1, N1 − u2) (40)

ρ(D0;u1, u2) = ρ(A;u1, u2) + ρ(B;u1, u2)− ρ(A,B;u1, N1 − u2) (41)

For N1 < u2 ≤ N1 +N2,

ρ(C0;u1, u2) + ρ(D0;u1, u2) = ρ(A,B;u1, u2 −N1)− ρ(A,B;u1, u2 −N1) = 0. (42)

Consequently, it is clear that when N1 > N2,

ρ(C0;u1, u2) + ρ(D0;u1, u2) =





2 (ρ(A;u1, u2) + ρ(B;u1, u2)) ,0 < u2 ≤ N1,

0,N1 < u2 ≤ N1 +N2.
(43)

then (C0, D0) is an ((L,N1 +N2) (L,N2 + 1)) − ZCAP. From the above, it is clear that
(C0, D0) is a Type-II ((L,N1 +N2) (L,min(N1, N2) + 1))− ZCAP .

Example 3. Let A =
(

+−++
++−+
+++−

)
and B =

(
+−
+−
++

)
. According to Theorem 3, we can

obtain C0 = A ∥ B =
(

+−+++−
++−++−
+++−++

)
and D0 = A ∥ −B =

(
+−−+−+
++−+−+
+++−−−

)
. The AACF

sum of C0 and D0 is shown in Figure 3, then it can be seen that (C0, D0) is a Type-II
((2, 5) (2, 3))− ZCAP.

Remark 2 : Since the order of the basis matrix selected by Theorem 3 is arbitrary, the
parameters of the ZCAP constructed by Theorem 3 are very flexible. In fact, Theorem
3 can yield optimal Type-II odd-dimensional ZCAP. For example, when L = 7, N1 =
3, N2 = 10, an odd-dimensional Type-II ((7, 13) (7, 4))−−ZCAP is obtained. According
to Definition 9, ((7, 13) (7, 4))−ZCAP is an optimal Type-II ZCAP. Besides, In addition,
the optimal Type-II ZCAP with parameters such as Type-II ((7, 13) (7, 4))− ZCAP and
Type-II ((9, 17) (9, 5))− ZCAP can be generated.
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Theorem 4. Using (C0, D0) obtained from Theorem 3 as the initial array, after k itera-
tions, we obtain

(
Ck, Dk

)
, where

Ck = Ck−1 ∥ Dk−1, Dk = Ck−1 ∥ −Dk−1 (44)

then
(
Ck, Dk

)
is a Type-II

(
L, 2k (N1 +N2) ,

(
L, 2k (N1 +N2)−min (N1, N2) + 1

))
−ZCAP.

Proof. This proof is akin to Theorem 3 and can be derived through mathematical induc-
tion, hence it is omitted.

Remark 3 : The ZCZ ratio of the Type-II ZCAPs can be calculated according to
Definition 7. In Theorem 4, the ZCZ ratio of the constructed ZCAP is that

ZCZratio =
Z1Z2

L1L2

=
2kL (N1 +N2)

2kL (N1 +N2)−min (N1, N2) + 1
= 1− min (N1, N2)− 1

2k (N1 +N2)
(45)

According to Eq. (45), when the number of iteration k is large enough, the ZCZ ratio of
the Type-II ZCAPs is close 1.

5 Comparison of ZCAP parameters

Until now, the construction methods and outcomes of ZCAPs are relatively inadequate.
We compare the parameters of the ZCAPs constructed in this paper with those in existing
literature in Table 1. Type- I ZCAPs were directly constructed by Boolean functions in
[22]-[24]. [5] and [9] provided more Type-I and Type-II ZCAPs by indirect methods.
Although ZCAPs in [9] can exist all array size, many ZCZ size cannot be obtained. Table
1 indicates that the parameters of proposed ZCAPs cannot be produced by the previous
constructions, such as optimal Type-I ((3, 9) , (2, 5)) − ZCAP, Type-I ((6, 6) , (4, 4)) −
ZCAP , Type-II ((2, 24) (2, 21))− ZCAP, optimal Type-II ((7, 13) (7, 4))− ZCAP.

6 Conclusions

In this paper, Type-I and Type-II ZCAPs with new parameters are proposed by indirect
construction methods. For Type-I ZCAPs, Theorem 1 involves concatenating ZCPs to
construct Type-I ZCAPs with multiple parameters, including optimal binary ZCAPs. In
Theorem 2, interleaving and iteration procedures are performed on binary ZCAPs with
small sizes to obtain binary ZCAPs with large sizes. For Type-II ZCAPs, we employ
arbitrary two arrays and apply concatenation and iteration operations to achieve optimal
Type-II ZCAPs. The outstanding advantage of the method is the absence of initial
array restrictions, making the parameters of Type-II ZCAPs flexible, with the ZCZ ratio
approaching 1 as the number of iterations increases.
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Table 1: Comparison of ZCAPs

Ref. ZCAP Parameters Types of ZCAPs ZCZratio Optimality (Y/N) Methods

[22]




(
2n, 2m−1 +

m−1∑
α=t+1

dα2
α−1 + 2v

)
,

(
2n, 2t−1 + 2v

)


 Type-I 2t−1+2v

2m−1+
m−1∑
α=t+1

dα2α−1+2v
N Boolean function

[23]




(
2m1−1 + 2n+1, 2m2 + 4

)
,

(
2π(n+1) + 2n+1, 2m2−2 + 2φ(m2−3) + 1

)


 Type-I

(2π(n+1)+2n+1)(2m2−2+2φ(m2−3)+1)
(2m1−1+2n+1)(2m2+4)

N Boolean function

[24]

((
14 · 2n−4, 2m

)
,
(
12 · 2n−4, 2m

))
Type-I

6/7 N
Boolean function

((14, 2m) , (12, 2m)) 6/7 N

[5]

((4, L) , (4, Z))

Type-I

Z/L N
Concatenation

((2m, 2nL) , (2m, Z)) Z/2nL N

((2L1, L2) , (L1, Z)) Z/2L2 N Kronecker product

[9]

((L1, 2L2) , (Z1, Z2))

Type-I

Z1Z2
2L1L2

N

Kronecker product and concatenation
((L1, 2L2) , (Z1, 2L2)) Z1/L1 N

((L1, 2L2 + 1) , (Z1, Z2))
Z1Z2

L1(2L2+1) N

((L1, 2L2 + 1) , (Z1, L2 + 1)) Z1(L2+1)
L1(2L2+1) Y

((L1, 2L2 + 2) , (Z1, L2 + 1)) Z1/2L1 N Concatenation

((L1, 2L2) , (Z1, 2Z2))
Z1Z2
L1L2

N Kronecker product and interleaving

((L1L3, L2L4) , (Z1, Z2))
Z1Z2

L1L2L3L4
N Kronecker product

((L1, 2L2) , (Z1, L2 + 1))

Type-II

Z1(L2+1)
2L1L2

N

Kronecker product and concatenation((L1, 2L2) , (Z1, 2L2)) Z1/L1 N

((L1, 2L2 + 1) , (Z1, L2 + 1)) Z1(L2+1)
L1(2L2+1) N

Thm. 1

((L, 3) , (Z, 2))

Type-I

2Z/3L

Y Concatenation

((L, 5) , (Z, 3)) 3Z/5L

((L, 7) , (Z, 4)) 4Z/7L

((L, 9) , (Z, 5)) 5Z/9L

((L, 11) , (Z, 6)) 6Z/11L

((L, 13) , (Z, 7)) 7Z/13L

Thm. 2

((
L1, 2

kL2

)
,
(
Z1, 2

kZ2

))
Type-I

Z1Z2
L1L2

N Interleaving and iteration((
2kL1, L2

)
,
(
2kZ1, Z2

))
Z1Z2
L1L2

Thm. 3 ((L,N1 +N2) , (L,min(N1, N2) + 1))
Type-II

min(N1,N2)+1
N1+N2

Y Concatenation

Thm. 4




(
L, 2k (N1 +N2)

)
,

(
L, 2k (N1 +N2)−min (N1, N2) + 1

)


 1− min(N1,N2)−1

2k(N1+N2)
N Iteration
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[8] P. Farkás, M. Turcsány, and H. Bali. : Application of 2D complete complementary
orthogonal codes in 2D-MC-SS-CDMA. C. Proceedings, 1–5, 2004.

[9] C.-Y. Pai, Y.-T. Ni, and C.-Y. Chen. : Two-Dimensional Binary Z-Complementary
Array Pairs. J. Transactions on Information Theory, 67(6): 3892–3904, 2021.

[10] Z. Liu, U. Parampalli, and Y. L. Guan. : Optimal Odd-Length Binary Z-
Complementary Pairs. J. Transactions on Information Theory, 60(9): 5768–5781,
2014.

[11] A. R. Adhikary, S. Majhi, Z. Liu, and Y. L. Guan. : New Sets of Optimal Odd-
Length Binary Z-Complementary Pairs. J. Transactions on Information Theory, 66(1):
669–678, 2020.

[12] B. Shen, Y. Yang, Z. Zhou, P. Fan, and Y. Guan. : New Optimal Binary Z-
Complementary Pairs of Odd Length 2m + 3. J. Signal Processing Letters, 26(12):
1931–1934, 2019.

[13] Z. Gu, Z. Zhou, Q. Wang, and P. Fan. : New Construction of Optimal Type-II Binary
Z-Complementary Pairs. J. Transactions on Information Theory, 67(6): 3497–3508,
2021.

Sequences and Their Applications (SETA) 2024 11



F. Kai Liu, P. S. Fanfei Meng, P. T. Mohan Xiang

[14] S.Tian, M. Yang, and J.Wang. : Two constructions of binary Z-complementary pairs.
J. Transactions on Fundamentals of Electronics, Communications, and Computer Sci-
ences, 104(4): 768-772, 2021.

[15] Z. Liu, U. Parampalli, and Y. L. Guan. : On Even-Period Binary Z-Complementary
Pairs with Large ZCZs. J. Signal Processing Letters, 21(3): 284–287, 2014.

[16] A. R. Adhikary, S. Majhi, Z. Liu, and Y. L. Guan. : New Sets of Even-Length Binary
Z-Complementary Pairs With Asymptotic ZCZ Ratio of 3/4. J. Signal Processing
Letters, 25(7): 970–973, 2018.

[17] C. Xie and Y. Sun. : Constructions of Even-Period Binary Z-Complementary Pairs
With Large ZCZs. J. Signal Processing Letters, 25(8): 1141–1145, 2018.

[18] C.-Y. Pai, S.-W. Wu, and C.-Y. Chen. : Z-Complementary Pairs With Flexible
Lengths From Generalized Boolean Functions. J. Communications Letters, 24(6):
1183–1187, 2020.

[19] Z. Gu, Y. Yang, and Z. Zhou. : New Sets of Even-Length Binary Z-Complementary
Pairs. C. 2019 Ninth International Workshop on Signal Design and its Applications
in Communications (IWSDA), 1-5, 2019.

[20] T. Yu, X. Du, L. Li, and Y. Yang. : Constructions of Even-Length Z-Complementary
Pairs With Large Zero Correlation Zones. J. Signal Processing Letters, 28: 828–831,
2021.

[21] R. Kumar, P. Sarkar, P. K. Srivastava, and S. Majhi. : A Direct Construction of
Asymptotically Optimal Type-II ZCP for Every Possible Even Length. J. IEEE Signal
Processing Letters, 28: 1799–1802, 2021.

[22] C.-Y. Pai and C.-Y. Chen. : A Novel Construction of Two-Dimensional Z-
Complementary Array Pairs With Large Zero Correlation Zone. J. Signal Processing
Letters, 28: 1245–1249, 2021.

[23] A. Roy, P. Sarkar, and S. Majhi. : A Direct Construction of q-Ary 2-D Z-
Complementary Array Pair Based on Generalized Boolean Functions. J. Commu-
nications Letters, 25(3): 706-710, 2021.

[24] H. Zhang, C. Fan, S. Mesnager. : Constructions of two-dimensional Z complementary
array pairs with a large ZCZ ratio. J. Designs, Codes and Crytography, 90: 1221–1239,
2022.

Sequences and Their Applications (SETA) 2024 12



Keynote Talk:

A survey of compositional inverses of

permutation polynomials over finite

fields

Steven (Qiang) Wang

Carleton University, Ottawa, Canada

Abstract. In this talk we survey on the recent results and methods

in the study of compositional inverses of permutation polynomials over

finite fields. In particular, we describe a framework in terms of a com-

mutative diagram which unifies several recent methods in finding the

inverses of permutation polynomials.



A proof of a conjecture on trivariate permutations

A proof of a conjecture on trivariate permutations

Daniele Bartoli1, Mohit Pal2, Pantelimon Stănică3, Tommaso Toccotelli1
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Abstract

In this note we show (for a large enough dimension of the underlying field)
a conjecture of [C. Beierle, C. Carlet, G. Leander, L. Perrin, A further study of
quadratic APN permutations in dimension nine, Finite Fields Appl. 81 (2022),
102049] on a trivariate permutation. This function is a global representation of two
new sporadic quadratic APN permutations in dimension 9 found by [C. Beierle,
G. Leander, New instances of quadratic APN functions, IEEE Trans. Inf. Theory
68(1) (2022), 670—678].

1 Introduction and tools from algebraic geometry

Let q = 2m, m ∈ N, and denote by Fq the finite field with q elements. For any positive
integer n, we denote by Fq[X1, . . . , Xn], the ring of polynomials in n indeterminates over
finite field Fq. An element f ∈ Fq[X1, . . . , Xn] is called a permutation polynomial in n
variables if the equation f(X1, . . . Xn) = a has qn−1 solutions in Fn

q for each a ∈ Fq. Let
F : Fn

q → Fn
q be a map given by

F (X1, . . . , Xn) = (f1(X1, . . . , Xn), . . . , fn(X1, . . . , Xn)),

where fi ∈ Fq[X1, . . . , Xn] then F is called a vectorial permutation if it induces a permu-
tation on Fn

q .
Vectorial Boolean functions are fundamental building blocks in symmetric cryptogra-

phy, since many block ciphers employ these as components in their S-boxes. Surely, as
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it is known, to counter known cipher attacks, these vectorial Boolean functions have to
satisfy many criteria such as nonlinearity, avalanche features, uniformity, etc. A known
measure against the differential attack is the differential uniformity, which must be low.
For a prime p and positive integer n > 0, the differential uniformity of an (n, n)-function
F : Fpn → Fpn is defined as the maximum number of solutions x of the differential equa-
tion F (x + a) − F (x) = b, where a ̸= 0, b ∈ Fpn . In odd characteristic, there are perfect
nonlinear (PN) functions of differential uniformity 1, while in even characteristic, the best
functions are almost perfect nonlinear (APN) of differential uniformity 2.

As a notation, Pr(Fq) and Ar(Fq) (or Fr
q) denote the projective and the affine space

of dimension r ∈ N over the finite field Fq, respectively. A variety, and more specifically
a curve or a surface (i.e. a variety of dimension 1 or 2, respectively), is described by
a certain set of equations with coefficients in Fq. We say that a variety V is absolutely
irreducible if there are no varieties V ′ and V ′′ defined over the algebraic closure of Fq

(denoted by Fq) and different from V such that V = V ′ ∪ V ′′. If a variety V ⊆ Ar(Fq)
is defined by Fi(X1, . . . , Xr) = 0, for i = 1, . . . s, an Fq-rational point of V is a point
(x1, . . . , xr) ∈ Ar(Fq) such that Fi(x1, . . . , xr) = 0, for i = 1, . . . , s. The set of the Fq-
rational points of V is usually denoted by V(Fq). If s = 1, V is called a hypersurface and
it is absolutely irreducible if the corresponding polynomial F (X1, . . . , Xr) is absolutely
irreducible, i.e. it possesses no non-trivial factors over Fq. Moreover, we say that V is a
variety of degree d (and write deg(V) = d) if d = #(V∩H), where H ⊆ Ar(Fq) is a general
projective subspace of dimension r − s. To determine the degree of a variety is generally
not straighforward; however an upper bound to deg(V) is given by

∏s
i=1 deg(Fi). We also

recall that the Frobenius map Φq : x 7→ xq is an automorphism of Fqk and generates the
group Gal(Fqk/Fq) of automorphisms of Fqk that fixes Fq pointwise. The Frobenius auto-

morphism induces also a collineation of Ar(Fq) and an automorphism of Fq[X1, . . . , Xr].
A crucial point in our investigation of permutation trinomials over Fq3 is to prove the ex-
istence of suitable Fq-rational points in algebraic surfaces V attached to each permutation
trinomial. This is reached by proving the existence of absolutely irreducible Fq-rational
components in V and lower bounding the number of their Fq-rational points. To this end,
generalizations of Lang-Weil type bounds for algebraic varieties are needed. To ensure
the existence of a suitable Fq-rational point of V , we need the following result.

Theorem 1. [5, Theorem 7.1] Let V ⊆ An(Fq) be an absolutely irreducible variety defined
over Fq of dimension r > 0 and degree δ. If q > 2(r + 1)δ2, then the following estimate
holds: ∣∣#(V(An(Fq)))− qr

∣∣ ≤ (δ − 1)(δ − 2)qr−1/2 + 5δ13/3qr−1. (1)

In our approach we will make use of the following result

Lemma 2. [1, Lemma 2.1] Let H be a projective hypersurface and X a projective variety
of dimension n−1 in Pn(Fq). If X∩H has a non-repeated absolutely irreducible component
defined over Fq then X has a non-repeated absolutely irreducible component defined over
Fq.
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2 Main result

Beierle and Leander [3] found two new APN permutations in dimension 9, namely

x 7→ x3 + ux10 + u2x17 + u4x80 + u5x192,

x 7→ x3 + u2x10 + ux24 + u4x80 + u6x136.

In this note, we shall consider the trivariate function Cu : F3
q → F3

q given by

(X, Y, Z) 7→ (X3 + uY 2Z, Y 3 + uXZ2, Z3 + uX2Y ).

This trivariate function is the representation of the two APN permutations in dimension
9 found by [3] mentioned above, and has been considered in [2] where the authors have
shown that it is a vectorial permutation for m = 3 and u ∈ F2m\{0, 1}. For m > 3, the
authors have proposed the following conjecture.

Conjecture 3 ([2]). Let m > 3 and let u ∈ F∗2m . Then the function Cu : F3
2m → F3

2m

given by
(X, Y, Z) 7→ (X3 + uY 2Z, Y 3 + uXZ2, Z3 + uX2Y )

is not a permutation.

It is the intent of our note to show the conjecture for m large enough.
It is easy to observe that when m is even then Cu is not a permutation as in this case

Cu(X, 0, 0) = (X3, 0, 0) and the function X 7→ X3 is 3-to-1. In what follows we assume
that m is odd. Note that Cu is a permutation if and only if the equation

Cu(X + α, Y + β, Z + γ) + Cu(X, Y, Z) = 0

has only the trivial solutions {(x, y, z, 0, 0, 0) : x, y, z ∈ F2m}.
Such a condition reads





αX2 + α2X + uγY 2 + uβ2Z = α3 + uβ2γ

βY 2 + β2Y + uγ2X + uαZ2 = β3 + uγ2α

γZ2 + γ2Z + uβX2 + uα2Y = γ3 + uα2β.

(2)

Before we take our algebraic geometry approach, we make some observations. First,
assume that only one among α, β and γ is nonzero. Without loss of generality (here
because of the symmetric property of Cu), we may assume that α ̸= 0 and β = γ = 0.
Then System (2) becomes 




αX2 + α2X + α3 = 0

uαZ2 = 0

uα2Y = 0.

It is straightforward to see that the first equation of the above system has no solution
X ∈ F2m as m is odd.
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Next, we assume that only one among α, β and γ is zero. Again, we may assume that
α, β ̸= 0 and γ = 0. Then System (2) becomes





αX2 + α2X + uβ2Z = α3

βY 2 + β2Y + uαZ2 = β3

uβX2 + uα2Y = uα2β,

(3)

which can be further simplified by replacing X 7→ αX and Y 7→ βY , i.e., System (3) is
equivalent to the following system





α3(X2 +X + 1) + uβ2Z = 0

β3(Y 2 + Y + 1) + uαZ2 = 0

X2 + Y + 1 = 0.

(4)

Now, squaring the first equation and putting X2 = Y + 1 into it, we have

α6(Y 2 + Y + 1) + u2β4Z2 = 0.

Multiplying above equation by α and putting uαZ2 = β3(Y 2 + Y + 1), we have

(α7 + uβ7)(Y 2 + Y + 1) = 0.

Thus, System (4) is equivalent to the following system





(α7 + uβ7)(Y 2 + Y + 1) = 0

β3(Y 2 + Y + 1) + uαZ2 = 0

X2 + Y + 1 = 0.

Notice that if α7 + uβ7 = 0, i.e., u is a 7th power then the above system has nonzero
solutions (X, Y, Z) ∈ F3

q and consequently Cu is not a permutation. When u is not a 7th

power then the first equation of this system has no solution X ∈ F2m for m odd. Thus,
in what follows, we assume that u is not a 7th power and m is odd.

Let

f(α, β,X, Y, Z) :=
α3 + α2X + αX2 + β2Zu

β2u+ Y 2u
,

g(β,X, Y, Z) := β12u9 + β12u6 + β12u3 + β12 + β9XZ2u10 + β9XZ2u4 + β9Y 3u9 + β9Y 3u3

+ β8XY Z2u10 + β8XY Z2u4 + β8Y 4u6 + β8Y 4 + β6X2Z4u8 + β6X2Z4u5

+ β6Y 6u6 + β6Y 6u3 + β5X7u8 + β5X7u5 + β5XY 4Z2u10 + β5XY 4Z2u7

+ β4X7Y u8 + β4X7Y u5 + β4X2Y 2Z4u8 + β4X2Y 2Z4u5 + β4XY 5Z2u10

+ β4XY 5Z2u7 + β4Y 8u9 + β4Y 8 + β3X7Y 2u5 + β3X4Y 4Zu6 + β3X3Z6u6

+ β3X3Z6u3 + β3X2Y 3Z4u5 + β3XY 6Z2u4 + β3Y 9u3 + β3Y 2Z7u4

+ β2X8Z2u6 + β2X7Y 3u8 + β2X5Y 2Z3u7 + β2X4Y 5Zu6 + β2X3Y Z6u3
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+ β2XY 7Z2u7 + β2XY 7Z2u4 + β2XZ9u5 + β2Y 10u6 + β2Y 3Z7u4

+ βX7Y 4u8 + βX4Y 6Zu6 + βX3Y 2Z6u6 + βX3Y 2Z6u3 + βX2Y 5Z4u5

+ βXY 8Z2u7 + βY 11u9 + βY 4Z7u4,

h(β,X, Y, Z) := u5(β + Y )2(β3X6u3 + β3X6 + β3Y 4Z2u5 + β3Y 4Z2u2 + β2X6Y u3 + β2X6Y

+ β2Y 5Z2u5 + β2Y 5Z2u2 + βX6Y 2u3 + βX6Y 2 + βY 6Z2u5 + βY 6Z2u2

+X7Z2u+X4Y 2Z3u2 +X2Y Z6u+XY 4Z4u3 + Y 7Z2u5 + Z9),

a0(β, Y, Z) := β24u21 + β24u18 + β24u15 + β24u12 + β24u9 + β24u6 + β24u3 + β24

+ β21Y 3u21 + β21Y 3u15 + β21Y 3u9 + β21Y 3u3 + β20Y 4u21 + β20Y 4u15

+ β20Y 4u9 + β20Y 4u3 + β18Y 6u18 + β18Y 6u15 + β18Y 6u6 + β18Y 6u3

+ β17Y 7u21 + β17Y 7u15 + β17Y 7u9 + β17Y 7u3 + β16Y 8u15 + β16Y 8u12

+ β16Y 8u3 + β16Y 8 + β15Y 9u15 + β15Y 9u3 + β15Y 2Z7u16 + β15Y 2Z7u4

+ β14Y 10u15 + β14Y 10u3 + β14Y 3Z7u16 + β14Y 3Z7u4 + β13Y 11u15

+ β13Y 11u3 + β13Y 4Z7u16 + β13Y 4Z7u4 + β12Y 12u15 + β12Y 12u12

+ β12Y 12u9 + β12Y 12u6 + β11Y 13u15 + β11Y 13u3 + β11Y 6Z7u16

+ β11Y 6Z7u4 + β10Y 14u15 + β10Y 14u3 + β10Y 7Z7u16 + β10Y 7Z7u4

+ β9Y 15u15 + β9Y 15u9 + β9Y 8Z7u22 + β9Y 8Z7u4 + β8Y 16u21 + β8Y 16u18

+ β8Y 16u9 + β8Y 16 + β8Y 9Z7u22 + β8Y 9Z7u16 + β7Y 17u15 + β7Y 17u3

+ β7Y 10Z7u16 + β7Y 10Z7u4 + β6Y 18u15 + β6Y 18u6 + β6Y 11Z7u22

+ β6Y 11Z7u4 + β6Y 4Z14u11 + β6Y 4Z14u8 + β5Y 19u21 + β5Y 19u9

+ β5Y 12Z7u16 + β5Y 12Z7u4 + β4Y 20u21 + β4Y 20u12 + β4Y 13Z7u22

+ β4Y 13Z7u16 + β4Y 6Z14u11 + β4Y 6Z14u8 + β3Y 21u15 + β3Y 14Z7u16

+ β3Y 7Z14u11 + β3Z21u12 + β2Y 22u18 + β2Y 15Z7u22 + β2Y 8Z14u8

+ β2Y Z21u12 + βY 23u21 + βY 16Z7u22 + βY 9Z14u11 + βY 2Z21u12,

a1(β, Y, Z) := β21Z2u19 + β21Z2u13 + β21Z2u7 + β21Z2u+ β20Y Z2u19 + β20Y Z2u13

+ β20Y Z2u7 + β20Y Z2u+ β18Y 3Z2u19 + β18Y 3Z2u13 + β18Y 3Z2u7

+ β18Y 3Z2u+ β17Y 4Z2u19 + β17Y 4Z2u13 + β17Y 4Z2u7 + β17Y 4Z2u

+ β15Y 6Z2u13 + β15Y 6Z2u+ β14Y 7Z2u13 + β14Y 7Z2u+ β13Y 8Z2u13

+ β13Y 8Z2u+ β11Y 10Z2u13 + β11Y 10Z2u+ β10Y 11Z2u13 + β10Y 11Z2u

+ β9Y 12Z2u13 + β9Y 12Z2u7 + β8Y 13Z2u7 + β8Y 13Z2u+ β7Y 14Z2u13

+ β7Y 14Z2u+ β6Y 15Z2u13 + β6Y 15Z2u7 + β5Y 16Z2u19 + β5Y 16Z2u7

+ β4Y 17Z2u19 + β4Y 17Z2u13 + β3Y 18Z2u13 + β3Y 4Z16u9 + β2Y 19Z2u19

+ β2Y 5Z16u9 + βY 20Z2u19 + βY 6Z16u9,

a2(β, Y, Z) := β18Z4u23 + β18Z4u20 + β18Z4u11 + β18Z4u8 + β16Y 2Z4u23

+ β16Y 2Z4u20 + β16Y 2Z4u11 + β16Y 2Z4u8 + β15Y 3Z4u23 + β15Y 3Z4u11

+ β14Y 4Z4u23 + β14Y 4Z4u11 + β13Y 5Z4u23 + β13Y 5Z4u11 + β11Y 7Z4u23

+ β11Y 7Z4u11 + β10Y 8Z4u23 + β10Y 8Z4u11 + β9Y 9Z4u23 + β9Y 9Z4u17
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+ β9Y 2Z11u18 + β9Y 2Z11u6 + β8Y 10Z4u17 + β8Y 10Z4u11 + β8Y 3Z11u18

+ β8Y 3Z11u6 + β7Y 11Z4u23 + β7Y 11Z4u11 + β6Y 12Z4u23 + β6Y 12Z4u17

+ β6Y 12Z4u11 + β6Y 12Z4u8 + β6Y 5Z11u18 + β6Y 5Z11u6 + β5Y 13Z4u23

+ β5Y 13Z4u11 + β4Y 14Z4u17 + β4Y 14Z4u8 + β4Y 7Z11u18 + β4Y 7Z11u6

+ β3Y 15Z4u23 + β3Y 15Z4u11 + β3Y 8Z11u6 + β3Y Z18u13 + β2Y 16Z4u20

+ β2Y 16Z4u17 + β2Y 9Z11u18 + β2Y 2Z18u13 + βY 17Z4u23 + βY 17Z4u17

+ βY 10Z11u18 + βY 3Z18u13 + Y 18Z4u23 + Y 18Z4u20 + Y 4Z18u13 + Y 4Z18u10,

a3(β, Y, Z) := β15Z6u21 + β15Z6u15 + β15Z6u9 + β15Z6u3 + β14Y Z6u21 + β14Y Z6u15

+ β14Y Z6u9 + β14Y Z6u3 + β13Y 2Z6u21 + β13Y 2Z6u15 + β13Y 2Z6u9

+ β13Y 2Z6u3 + β11Y 4Z6u21 + β11Y 4Z6u15 + β11Y 4Z6u9 + β11Y 4Z6u3

+ β10Y 5Z6u21 + β10Y 5Z6u15 + β10Y 5Z6u9 + β10Y 5Z6u3 + β9Y 6Z6u15

+ β9Y 6Z6u3 + β8Y 7Z6u21 + β8Y 7Z6u9 + β7Y 8Z6u21 + β7Y 8Z6u15 + β7Y 8Z6u9

+ β7Y 8Z6u3 + β6Y 9Z6u15 + β6Y 9Z6u3 + β5Y 10Z6u21 + β5Y 10Z6u15

+ β5Y 10Z6u9 + β5Y 10Z6u3 + β4Y 11Z6u21 + β4Y 11Z6u9 + β3Y 12Z6u21

+ β3Y 12Z6u15 + β3Y 12Z6u9 + β2Y 13Z6u15 + βY 14Z6u15,

a4(β, Y, Z) := β15Y 4Zu18 + β15Y 4Zu6 + β14Y 5Zu18 + β14Y 5Zu6 + β13Y 6Zu18

+ β13Y 6Zu6 + β12Z8u19 + β12Z8u16 + β12Z8u13 + β12Z8u10

+ β11Y 8Zu18 + β11Y 8Zu6 + β10Y 9Zu18 + β10Y 9Zu6 + β9Y 10Zu18

+ β9Y 10Zu6 + β9Y 3Z8u19 + β9Y 3Z8u13 + β8Y 4Z8u16 + β8Y 4Z8u10

+ β7Y 12Zu18 + β7Y 12Zu6 + β6Y 13Zu18 + β6Y 13Zu6 + β6Y 6Z8u19

+ β6Y 6Z8u10 + β5Y 14Zu18 + β5Y 14Zu6 + β4Y 8Z8u16 + β4Y 8Z8u13

+ β3Y 16Zu18 + β3Y 2Z15u14 + β3Y 2Z15u8 + β2Y 17Zu18 + β2Y 10Z8u19

+ β2Y 10Z8u10 + β2Y 3Z15u14 + β2Y 3Z15u8 + βY 18Zu18 + βY 11Z8u19

+ βY 11Z8u13 + βY 4Z15u14 + βY 4Z15u8 + Y 12Z8u19 + Y 12Z8u16,

a5(β, Y, Z) := β9Z10u11 + β9Z10u5 + β8Y Z10u11 + β8Y Z10u5 + β6Y 3Z10u11

+ β6Y 3Z10u5 + β4Y 5Z10u11 + β4Y 5Z10u5 + β3Y 6Z10u5 + β2Y 7Z10u11

+ βY 8Z10u11

a6(β, Y, Z) := β9Y 4Z5u20 + β9Y 4Z5u8 + β8Y 5Z5u20 + β8Y 5Z5u8 + β6Y 7Z5u20

+ β6Y 7Z5u8 + β6Z12u15 + β6Z12u12 + β6Z12u9 + β6Z12u6 + β4Y 9Z5u20

+ β4Y 9Z5u8 + β4Y 2Z12u15 + β4Y 2Z12u12 + β4Y 2Z12u9 + β4Y 2Z12u6

+ β3Y 10Z5u8 + β3Y 3Z12u9 + β2Y 11Z5u20 + β2Y 4Z12u15 + β2Y 4Z12u12

+ β2Y 4Z12u6 + βY 12Z5u20 + βY 5Z12u9 + Y 6Z12u15 + Y 6Z12u12,

a7(β, Y, Z) := β15Y 2u17 + β15Y 2u5 + β14Y 3u17 + β14Y 3u5 + β13Y 4u17 + β13Y 4u5

+ β11Y 6u17 + β11Y 6u5 + β10Y 7u17 + β10Y 7u5 + β9Y 8u17 + β9Y 8u5

+ β7Y 10u17 + β7Y 10u5 + β6Y 11u17 + β6Y 11u5 + β5Y 12u17 + β5Y 12u5

+ β3Y 14u17 + β3Z14u13 + β2Y 15u17 + β2Y Z14u13 + βY 16u17
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+ βY 2Z14u13,

a8(β, Y, Z) := β6Y 8Z2u15 + β6Y 8Z2u12 + β4Y 10Z2u15 + β4Y 10Z2u12 + β3Y 11Z2u15

+ β3Y 4Z9u16 + β3Y 4Z9u10 + β2Y 12Z2u12 + β2Y 5Z9u16 + β2Y 5Z9u10

+ βY 13Z2u15 + βY 6Z9u16 + βY 6Z9u10,

a9(β, Y, Z) := β9Y 2Z4u19 + β9Y 2Z4u7 + β8Y 3Z4u19 + β8Y 3Z4u7 + β6Y 5Z4u19

+ β6Y 5Z4u7 + β4Y 7Z4u19 + β4Y 7Z4u7 + β3Y 8Z4u13 + β3Y 8Z4u7

+ β2Y 9Z4u19 + β2Y 9Z4u13 + βY 10Z4u19 + βY 10Z4u13,

a10(β, Y, Z) := β3Y 5Z6u17 + β2Y 6Z6u17 + βY 7Z6u17 + Y 8Z6u17 + Y 8Z6u14,

a11(β, Y, Z) := β3Y 2Z8u9 + β2Y 3Z8u9 + βY 4Z8u9,

a12(β, Y, Z) := β9Z3u18 + β9Z3u12 + β8Y Z3u18 + β8Y Z3u12 + β6Y 3Z3u18 + β6Y 3Z3u12

+ β4Y 5Z3u18 + β4Y 5Z3u12 + β3Y 6Z3u18 + β2Y 7Z3u12 + βY 8Z3u12,

a13(β, Y, Z) := 0,

a14(β, Y, Z) := β9Y u19 + β9Y u13 + β8Y 2u19 + β8Y 2u13 + β6Y 4u19 + β6Y 4u10

+ β4Y 6u19 + β4Y 6u10 + β3Y 7u13 + β3Z7u14 + β2Y 8u19 + β2Y 8u13

+ β2Y 8u10 + β2Y Z7u14 + βY 9u19 + βY 2Z7u14,

a15(β, Y, Z) := β3Y 4Z2u17 + β3Y 4Z2u11 + β2Y 5Z2u17 + β2Y 5Z2u11 + βY 6Z2u17 + βY 6Z2u11,

a16(β, Y, Z) := β3Y Z4u15 + β2Y 2Z4u15 + βY 3Z4u15 + Y 4Z4u15 + Y 4Z4u12,

a17(β, Y, Z) := 0,

a18(β, Y, Z) := β3Y 2Zu16 + β2Y 3Zu16 + βY 4Zu16,

a19(β, Y, Z) := 0,

a20(β, Y, Z) := 0,

a21(β, Y, Z) := β3u15 + β2Y u15 + βY 2u15.

Proposition 4. Each element of

Θ := {(x, y, z, a, b, c) ∈ F6
q : (b+ y)h(b, x, y, z) ̸= 0, c = f(a, b, x, y, z),

a = g(b, x, y, z)/h(b, x, y, z),
∑21

i=0 ai(b, y, z)x
i = 0}

is a solution of System (2).

Proof. This is easily checked via direct computations in MAGMA [4].

Proposition 5. Let V ⊂ A6(Fq) be the variety defined by





X3 = f(X1, X2, X4, X5, X6)

X1 = g(X2, X4, X5, X6)/h(X2, X4, X5, X6)∑21
i=0 ai(X2, X5, X6)X

i
4 = 0.

Then V contains an absolutely irreducible component defined over Fq, distinct from X1 =
X2 = X3 = 0, of degree at most 27, and not contained in (X2+X5)h(X2, X4, X5, X6) = 0.
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Proof. Since
∑21

i=0 ai(X2, X5, X6)X
i
4 is a homogeneous polynomial of degree 24 it defines a

surface S in P3(Fq). First note that X2 is not a factor of
∑21

i=0 ai(X2, X5, X6)X
i
4, otherwise

u ∈ F4, a contradiction. Also, S contains an absolutely irreducible component defined
over Fq, since its intersection with the plane X4 = 0 is

a21(X2, X5, X6) = u15X2(X
2
2 +X2X5 +X2

5 ) = 0

and by Lemma 2 there exists an absolutely irreducible component S ′ defined over Fq

whose intersection with X4 = 0 is X2 = 0. Since the intersection between (X2 +
X5)h(X2, X4, X5, X6) = 0 and X2 = 0 is

u5X2
6 (X2 +X5)

2((u2 + u5)X3
2X

4
5 + (u2 + u5)X2

2X
5
5 + (u2 + u5)X2X

6
5 + u5X7

5 +X7
6 ) = 0,

S ′ cannot be contained in (X2 +X5)h(X2, X4, X5, X6) = 0.
Clearly, S ′ extends to a variety V ′ contained in V , absolutely irreducible and Fq-

rational (by considering the two extra equations X3 = f(X1, X2, X4, X5, X6) and X1 =
g(X2, X4, X5, X6)/h(X2, X4, X5, X6)). Since S ′ is different from X2 = 0, V ′ is different
from X1 = X2 = X3 = 0. The degree of V ′ is upper bounded by the degree of V , that is
at most 33 = 27.

The following is the main achievement of our paper.

Theorem 6. If m is large enough, Conjecture 3 is true.

Proof. By Proposition 5 and Theorem 1, if m is large enough, the absolutely irreducible
Fq-rational component V ′ (and thus V) possesses roughly q3 of Fq-rational points. Since
V ′ is not X1 = X2 = X3 = 0 and it not contained in (X2 +X5)h(X2, X4, X5, X6) = 0, the
set Θ is not empty and the claim follows.

Remark 7. Using Theorem 1 it is possible to give a more accurate estimate for the mini-
mum integer m that confirms the conjecture. First, notice that points of V ′ not belonging
to (X2 + X5)h(X2, X4, X5, X6) = 0 correspond to quadruples (x2, x4, x5, x6) ∈ F4

q such

that
∑21

i=0 ai(x2, x4, x5)x
i
4 = 0 and (x2 + x5)h(x2, x4, x5, x6) ̸= 0. It can be easily veri-

fied that the intersections of S and (X2 + X5)h(X2, X4, X5, X6) = 0 with X4 = 0 are
coprime: this shows that they do not share any component. Also, since the degree of
these surfaces is 24 and 12 respectively, their intersection is a projective space curve of
degree 288 and it contains at most 288q projective Fq-rational points; see [6]. This shows
the existence of at most 288q(q − 1) nonzero quadruples (x1, x2, x3, x4) ∈ F4

q such that∑21
i=0 ai(x2, x4, x5)x

i
4 = 0 and (x2+x5)h(x2, x4, x5, x6) = 0. Arguing similarly, there are at

most 24q(q−1) nonzero quadruples (x1, x2, x3, x4) ∈ F4
q satisfying

∑21
i=0 ai(x2, x4, x5)x

i
4 = 0

and x2 = 0 (and thus lying on X1 = X2 = X3 = 0). By Theorem 1 the number of Fq-
rational points in Θ is at least

q3 − 25 · 26 · q5/2 − 5 · (27)13/3q2 − 312q(q − 1),

that is larger than 0 when m ≥ 25 and thus Conjecture 3 holds true.
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Abstract
We prove that for n > 1 the map χ : Fn

q → Fn
q , defined by y = χ(x) with

yi = xi + xi+2 · (1 + xi+1) for 1 ≤ i ≤ n, is bijective if and only if q = 2 and n is
odd, as it was conjectured in [8].

1 Introduction

Let q be any prime power and n a positive integer. Several cryptographic primitives,
including ASCON [4] and SHA-3 [6], use the map χ : Fn

q → Fn
q given by y = χ(x) with

yi = xi + xi+2 · (1 + xi+1)

for 1 ≤ i ≤ n, where the indices are computed modulo n. Let the symbol ⊙ denote the
element wise multiplication of two vectors (also known as the Hadamard product), i.e.,
z = x ⊙ y with zi = xi · yi for all i = 1, . . . , n. Further, denote by S the cyclic left shift
operator on Fn

q , that is S(x1, . . . , xn) = (x2, . . . , xn, x1). Let Sj denote the j-th iterate of
S for j ≥ 0. Note that S0 is the identity map. Then χ can also be written as

χ(x) = x + S(x) ⊙ S2(x) + S2(x).

It is known that χ : Fn
2 → Fn

2 is bijective if and only if n is odd [2]. Some partial
results are proved about bijectivity of χ for q ̸= 2. In [8] it was shown that for k ≥ 1 the
map χ is not a permutation, when

• q is odd,

• q = 2k and n is even,

• q = 22k and n > 1 is odd,

• q = 23k and n > 1 is odd.
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In [7] the following additional parameters were ruled out using an approach based on
Gröbner basis:

• q = 25k or q = 27k and n is a multiple of 3 or 5.

It was conjectured in [8] that χ is not a permutation in all other cases except when q = 2
and n odd. We confirm this conjecture using linear algebra methods. More precisely, we
prove in Lemmas 3 to 5 that the following result holds:

Theorem 1. For q = 2 the map χ is a permutation if and only if n is odd. For any prime
power q > 2, the map χ : Fn

q → Fn
q is a permutation if and only if q is even and n = 1.

We conclude our note with a short proof for the rank of the linear part of χ(x+a)+χ(x),
which appears in the study of the differential properties of the map χ : Fn

2 → Fn
2 .

2 Deriving the linear system

The map χ is not a permutation if and only if there exist vectors a, x ∈ Fn
q with a ̸= 0

such that
χ(x + a) − χ(x) = 0. (1)

Note that for any j the map Sj is linear over Fq. Furthermore, the Hadamard product
is commutative and distributive with respect to addition, i.e. x⊙y = y⊙x and x⊙(y+z) =
x ⊙ y + x ⊙ z for all x, y, z ∈ Fn

q . Moreover, we have Sj(x ⊙ y) = Sj(x) ⊙ Sj(y). Using
these properties, we obtain

χ(x + a) = x + a + S(x + a) ⊙ S2(x + a) + S2(x + a)
= x + a + [S(x) + S(a)] ⊙ [S2(x) + S2(a)] + S2(x) + S2(a)
= x + a + S(x) ⊙ S2(x) + S(x) ⊙ S2(a) + S(a) ⊙ S2(x) + S(a) ⊙ S2(a) + S2(x) + S2(a)
= χ(x) + a + S(x) ⊙ S2(a) + S(a) ⊙ S2(x) + S(a) ⊙ S2(a) + S2(a)

and therefore

χ(x + a) − χ(x) = a + S2(a) + S(a ⊙ S(x) + x ⊙ S(a) + a ⊙ S(a)).

For a fixed a ∈ Fn
q \ {0}, the equation χ(x + a) − χ(x) = 0 has a solution x if and only if

−a − S2(a) = S(a ⊙ S(x) + x ⊙ S(a) + a ⊙ S(a))

has a solution, which, by applying S−1 on both sides, is equivalent to

− S−1(a) − S(a) − a ⊙ S(a) = a ⊙ S(x) + x ⊙ S(a). (2)
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The right-hand side of (2) is a linear map in x and hence it reduces to a system of linear
equations over Fq. We represent this system of equations using matrices:




a2 a1
a3 a2

a4 a3
. . . . . .

an−1 an−2
an an−1

an a1




· x = −




a1a2 + a2 + an

a2a3 + a3 + a1
a3a4 + a4 + a2

...
an−2an−1 + an−1 + an−3

an−1an + an + an−2
ana1 + a1 + an−1




, (3)

where a = (a1, . . . , an). We denote the coefficient matrix in (3) by A(a) and the vector in
its right-hand side by b(a). We abbreviate A(a) · x = b(a) often by (A(a)|b(a)).

Observe that the map χ : Fn
q → Fn

q is bijective if and only if for any non-zero a ∈ Fn
q

equation (3) has no solution. Our goal is now to check whether (3) has a solution x for
some fixed non-zero a.

3 The case q > 2

In this section we show that for q > 2 the map χ is a permutation on Fn
q if and only if q

is even and n = 1. We consider separately the cases n = 1, 2, 3 and n > 3.
First let us assume that n = 1. In that case S(x) = x is the identity map and therefore

χ(x) = x+S(x)⊙S2(x)+S2(x) = x+x2 +x = x2 +2x = x(x+2), which is a permutation
if and only if q is even, as for q odd we have χ(0) = χ(−2) and χ is not injective.
Remark 2. In general for any n it holds that χ(0, . . . , 0) = χ(−2, . . . , −2) and therefore χ
is never a permutation in odd characteristic, as noted in [8]. Therefore, from now on we
could restrict ourselves to even characteristic. However, the rest of the proof presented
here is valid independently of the characteristic of Fq, with the minor exception in the
case n = 3.

We continue with n = 2. In this case (3) has the form
(

a2 a1 −a1a2 − 2a2
a2 a1 −a1a2 − 2a1

)
.

This has a solution for example in the case a = (1, 1) which shows that χ is not a
permutation.

Next, let n = 3. Now the system (3) looks like



a2 a1 −a1a2 − a2 − a3
a3 a2 −a2a3 − a3 − a1

a3 a1 −a3a1 − a1 − a2


 . (4)

Note that the determinant of the coefficient matrix is 2a1a2a3. Therefore, if q is odd, we
can choose a1, a2, a3 all nonzero and the corresponding system always has a solution. In
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the case q even, assume that a2 ̸= 0. Let r1, r2, r3 be the rows of the system (4). By
replacing r3 with a3r1 + a1r2 + a2r3 we obtain




a2 a1 a1a2 + a2 + a3
a3 a2 a2a3 + a3 + a1

0 a2
1 + a2

2 + a2
3 + a1a2 + a1a3 + a2a3 + a1a2a3


 . (5)

This system has a solution if there exist choices of a1, a2, a3 ∈ Fq such that a2, a3 ̸= 0 and
a2

1 + (a2 + a3 + a2a3)a1 + (a2a3 + a2
2 + a2

3) = 0, (6)
which is a quadratic equation in a1. Having in mind, that in binary fields a quadratic
equation X2 +uX +v = 0 has always a solution if u = 0, we put a2 +a3 +a2a3 = 0 in (6).
Equivalently, by adding 1 on both sides, (a2 + 1)(a3 + 1) = 1. As q > 2, we can choose
an element a3 ∈ Fq \ {0, 1} and then a2 = 1

a3+1 + 1 = a3
a3+1 ̸= 0. For these a2, a3 ̸= 0 the

quadratic equation (6) has a solution a1 ∈ Fq, implying the existence of (a1, a2, a3) ̸= 0
for which the linear system (5) has a solution x.

We have thus proved the following lemma.
Lemma 3. Let q > 2. If n = 1 then χ is a permutation if and only if q is even. If
n = 2, 3 then χ is not a permutation.

Let now n > 3. Again, we show that for certain choices of the vector a ∈ Fn
q \ {0} the

equation (3) admits a solution x. Let an = 0. Then the linear system (3) reduces to



a2 a1 −a1a2 − a2
a3 a2 −a2a3 − a3 − a1

a4 a3 −a3a4 − a4 − a2
. . . . . . ...

an−1 an−2 0 −an−2an−1 − an−1 − an−3
0 0 an−1 −an−2
0 0 a1 −a1 − an−1




.

Further, let all a1, . . . , an−1 be non-zero and assume

det
(

an−1 an−2
a1 a1 + an−1

)
= 0,

or equivalently, an−1(a1 + an−1) = a1an−2. Under this assumption there is a solution
x ∈ Fn

q . Indeed we can choose xn−1 arbitrarily, for example xn−1 = 1, and then xn =
−an−2

an−1
. The remaining components are obtained by simple back substitution, as the other

diagonal entries are all nonzero.
Now it remains to see that there are non-zero a1, an−1, an−2 ∈ Fq such that the as-

sumption an−1(a1 + an−1) = a1an−2 is satisfied. Note that because n > 3 the components
a1, an−1, an−2 do not coincide. Let an−1 = 1 and choose a1 ∈ Fq \{0, −1} arbitrarily. Then
a1 + 1 ̸= 0 and an−2 = a1+1

a1
̸= 0, fulfilling the requirements.

We have thus proved the following result.
Lemma 4. Let q > 2 and n > 3. Then χ : Fn

q → Fn
q is not a permutation.
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4 The special case q = 2

It is known that for q = 2 the map χ : Fn
2 → Fn

2 is bijective if and only if n is odd. If n is
even it is easy to see that χ is not a permutation. Indeed,

χ(1, 0, 1, 0, . . . , 1, 0) = (0, . . . , 0) = χ(0, . . . , 0),

as it has been noted in [2]. The fact that χ is a permutation for n odd was proved in [2]
by using a seed-and-leap method to compute the preimage of a given element y ∈ Fn

2 . A
more detailed proof of this approach can be found in [3]. Another method to compute
the inverse of χ for n odd is given in Appendix D of [1], however without a proof. In [5]
an explicit inverse formula of χ is given and proved.

To have a unified proof for Theorem 1, we present here a short proof for the statement
that χ : Fn

2 → Fn
2 is bijective if n is odd, applying the method developed in the previous

sections.

Let now n be odd. If n = 1 then χ(x) = x2 = x which is a permutation. So now
assume n ≥ 3. Let a ∈ Fn

2 \{0} be arbitrary. We aim to show that there is no solution x to
χ(x) + χ(x + a) = 0. It can be easily seen that χ is shift-invariant, i.e. S(χ(x)) = χ(S(x))
for all x ∈ Fn

2 . Therefore, if χ(x) + χ(x + a) = 0 has a solution, then it follows that also

0 = S(0) = S(χ(x) + χ(x + a)) = χ(S(x)) + χ(S(x) + S(a))

and there also exists a solution S(x) for S(a).
In the following we show that (3) has no solution by considering three cases. First we

assume that a has two consecutive entries which are zero. Next we will assume that a has
a zero entry such that the entries before and after are both nonzero. And finally we will
assume that a only has nonzero entries.

Suppose now (3) has a solution x for a non-zero a with ai = ai+1 = 0 for some
1 ≤ i ≤ n. Since χ is shift-invariant, by considering an appropriate shift of a, we may
assume without loss of generality that an = a1 = 0. The last row of (3) then looks as
follows: (

0 0 an−1
)

.

As the system has a solution x, it then follows that an−1 = 0. However, then by considering
the (n − 1)-th row, it follows that also an−2 = 0. By repeating this argument we obtain
a = 0, a contradiction.

Next we assume that there exists an index i ∈ {1, . . . , n} such that ai = 0 and
ai−1 = ai+1 = 1. Again, by considering shifts of a, we may assume that i = n. From the
last two rows of (3) it then immediately follows that an−2 = xn = 0. If an−3 = 0, then
we are in the previous case. Otherwise, we can repeat this argument and obtain that
an−2k = 0 for all integers k. However, using that n = 2m + 1 is odd, we then also obtain
an−2m = a1 = 0, a contradiction to the assumption that a1 ̸= 0.
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Finally, we need to consider a = (1, . . . , 1). In this case (3) reduces to



1 1 1
1 1 1

1 1 1
. . . . . . ...

1 1 1
1 1 1

1 1 1




By adding every of the first n − 1 rows to the last one, we obtain (using that n − 1 is
even) the row (

0 0 1
)

which means that the equation has no solution.

The above considerations imply the following result:

Lemma 5. The map χ : Fn
2 → Fn

2 is a permutation if and only if n is odd.

Open Problem 6. Can our approach be used to find more information on the image set
of χ : Fn

q → Fn
q , like its size or the preimage distribution?

5 Rank of the coefficient matrix A(a) over F2

The equation (3) appears in the study of differential and linear properties of χ. In partic-
ular, the ranks of matrices A(a) allow to determine the Walsh spectrum of χ. In [8] the
following proposition is proved:

Proposition 7. For any a ∈ Fn
2 the rank of the matrix A(a) over F2 is given by

rank A(a) = ω(a) :=




n − 1, a = (1, . . . , 1)
wt(a) + r(a), otherwise

where wt(a) is the Hamming weight and r(a) is the number of 001-patterns in a. More
precisely, r(a) is the number of indices i = 1, . . . , n such that (ai, ai+1, ai+2) = (0, 0, 1)
where the indices are computed modulo n.

We present a shorter proof of this fact using induction on n.

Claim 8. Proposition 7 is true for n = 1, 2, 3.

Proof. For n = 1, observe that A(a1) = (2a1) = (0), and rank A(0) = rank A(1) = 0 =
ω(1) = ω(0). For n = 2 we have

A(a1, a2) =
(

a2 a1
a2 a1

)
.
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It is easily seen that, rank A(0, 0) = 0 = ω(0, 0) and rank A(1, 1) = rank A(1, 0) =
rank A(0, 1) = 1 = ω(1, 1) = ω(1, 0) = ω(0, 1). Let n = 3, in which case

A(a1, a2, a3) =




a2 a1
a3 a2

a3 a1


 . (7)

Using the shift-invariance of the rank of A(a), we only need to consider the cases when
a equals (0, 0, 0), (1, 0, 0), (1, 1, 0), or (1, 1, 1). It is easily seen that rank A(0, 0, 0) = 0 =
ω(0, 0, 0) and ω(1, 0, 0) = 2 = rank A(1, 0, 0) and ω(1, 1, 0) = 2 = rank A(1, 1, 0) and
ω(1, 1, 1) = 2 = rank A(1, 1, 1).

Claim 9. Proposition 7 is true for a = (0, . . . , 0) and a = (1, . . . , 1) with n ≥ 3.

Proof. If a = (0, . . . , 0) then A(a) is the zero matrix and rank A(a) = 0 = ω(a) is clear.
If a = (1, . . . , 1), then the first n − 1 rows of A(a) are linearly independent, so

rank A(a) ≥ n − 1. On the other hand, (1, . . . , 1) is in the kernel of A(a), so rank A(a) ≤
n − 1 and therefore rank A(a) = n − 1 = ω(a).

We now proceed by induction on n. Let n > 3 be fixed and assume that the claim is
true for all vectors u ∈ Fk

2 with k < n. Let a ∈ Fn
2 . If a = (0, . . . , 0) or a = (1, . . . , 1) then

the claim is true by Claim 9. Therefore, we may assume that a ̸= (0, . . . , 0), (1, . . . , 1).
Note that from the shift-invariance of χ it follows that the rank of A(a) is invariant under
shifts of a. Equivalently, this can also be seen by switching rows and columns. Therefore,
we can assume that a1 = 1, an = 0. We write the vector a in the following form:

a = (1, ∗, . . . , ∗, 0︸ ︷︷ ︸
= u

, 1, . . . , 1︸ ︷︷ ︸
= v

, 0, . . . , 0︸ ︷︷ ︸
= w

)

More precisely, let k be the last index such that ak = 1 and aj be the first index such that
ai = 1 for all i = j, . . . , k. Then u = (a1, . . . , aj−1) = (1, ∗, . . . , ∗, 0), v = (aj, . . . , ak) =
(1, . . . , 1) and w = (ak+1, . . . , an) = (0, . . . , 0). Note that we allow the vector u to be
empty. This happens if and only if a = (1, . . . , 1, 0, . . . , 0), equivalently, j = 1. If a
contains at least one occurrence of a 001-pattern, then by shift-invariance we can assume
that w contains at least two zeros. Otherwise, w = (0).

Note that wt(a) = wt(u)+wt(v) = wt(u)+(k−j +1). Now consider the 001-patterns.
Any 001-pattern in a either is completely contained inside u, ends exactly at aj or ends
at a1. In the first case the 001-pattern is also contained in u. In the second case we know
that u = (1, ∗, . . . , ∗, 0, 0) ends in at least two zeros, and it also has a 001-pattern which
ends at a1. The last case occurs if and only if w has at least two zeros. It follows that

r(a) =




r(u) + 1 w contains at least two zeros
r(u) otherwise.
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Then the matrix A(a) has the following form:




a2 a1
. . . . . .

aj−1 aj−2
0 aj aj−1

aj+1 aj

. . . . . .
ak−1 ak−2

ak ak−1
ak+1 ak

ak+2 ak+1
. . . . . .

an an−1
an a1




=




a2 a1
. . . . . .

0 aj−2
0 1 0

1 1
. . . . . .

1 1
1 1

0 1
0 0

. . . . . .
0 0

0 1




(8)

Note that A(a) is a block diagonal matrix. The first block is the matrix A(u) with
rank A(u) = ω(u) by the induction hypothesis. This also holds in the degenerate case
that u is empty if we then define ω(u) = 0. The second block has rank k − j. Note that
if k = j then the second block is empty. The third block has rank 2 if w includes at least

two zeros, otherwise it has the form
(

1
1

)
and has rank 1. Remember that the rank of a

block diagonal matrix is the sum of the ranks of the blocks on the diagonal. It follows
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that

rank A(a) = ω(u) + (k − j) +




2 w contains at least two zeros
1 otherwise

= wt(u) + (k − j + 1) + r(u) +




1 w contains at least two zeros
0 otherwise

= wt(a) + r(a) = ω(a).

For clarity, we also write down how (8) looks in the degenerate cases, namely that u
empty, j = k or both. We keep the horizontal and vertical lines to show which blocks
vanish. If u is empty and j < k, then a = (1, . . . , 1, 0, . . . , 0) and

A(a) =




1 1
. . . . . .

1 1
1 1

0 1
0 0

. . . . . .
0 0

0 1




.

If u is not empty and j = k, then a = (1, ∗, . . . , ∗, 0, 1, 0, . . . , 0) and

A(a) =




a2 a1
. . . . . .

0 aj−2
0 1 0

0 1
0 0

. . . . . .
0 0

0 1




.

If u is empty and j = k, then a = (1, 0, . . . , 0) and

A(a) =




0 1
0 0

. . . . . .
0 0

0 1




.
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Abstract

A universal cycle for k-permutations is a cyclic arrangement in which each k-
permutation appears exactly once as k consecutive elements. In this paper, we study
the enumeration problem of universal cycles for k-permutations (Problem 477[?])
and obtain exact formulae for k = 3, 4.

1 Introduction

Universal cycles were introduced by Chung, Diaconis, and Graham [?] as generalizations
of de Bruijn cycles [?], which are cyclic binary sequence of length 2n that contain every
binary n-tuple. Universal cycles are connected with Gray codes deeply [?, ?]. In this
paper we consider the universal cycles for k-permutations. Given a positive integer n, let
[n] = {1, 2, . . . , n}. A k-permutation is an ordered arrangement of k distinct elements in
[n], 1 ≤ k ≤ n. Let Pn,k be the set of all k-permutations of the n-set [n]. Obviously,
|Pn,k| = n!/(n − k)!. Let C = (c1, c2, . . . , c|Pn,k|) be a cyclic arrangement (or periodic
sequence), where each ci ∈ [n] for 1 ≤ i ≤ |Pn,k|. If in C each k-permutation appears
exactly once as k consecutive elements, then we say that C is a universal cycle for Pn,k.
For example, if n = 4 and k = 2, then (123413242143) is a universal cycle for P4,2

It is obvious that there is no universal cycle for k-permutations when k = n. Jackson
[?] showed that the universal cycle for k-permutations always exists when k < n. There
are lots of results about the construction of universal cycles for k-permutations, mainly for
the case that k = n− 1 named shorthand permutations [?, ?, ?, ?]. Wong [?] introduced
the relaxed shorthand notation to encode permutations. Recently, Sawada and Williams
[?] consider the universal cycle for strings with fixed-content. An interesting problem is
to enumerate distinct universal cycles for k-permutations. This problem was formally
presented in [?].
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Problem 1. (Problem 477 [?]) How many different universal cycles for Pn,k exist?

As far as we know, this enumeration problem is still open. When k = 1, the number
of universal cycles for Pn,1 is obviously equal to (n − 1)!. However, for k ≥ 2, it is
not easy to enumerate universal cycles. The number of universal cycles for Pn,2 and
Pn,3 were obtained in [?], using Eulerian tours on certain digraphs and their adjacency
matrices, their powers, and corresponding eigenvalues. The key is to find an algebraic
relation between the adjacency matrix and the all one matrix, and thus to determine these
eigenvalues. However, for k ≥ 4, it is complicated to determine the enumeration formula
by using the method in [?]. In this paper, we propose a new method to find eigenvalues
of the adjacency matrix and thus count the number of universal cycles. Based on this
method, we obtain the exact formula for k = 4, and this also gives a new proof of the
exact formula for k = 3.

Let us recall some definitions and concepts for digraphs. For a vertex v in a digraph,
its out-degree is the number of arcs with initial vertex v, and its in-degree is the number
of arcs with final vertex v. A digraph is balanced if each vertex has the same in-degree
and out-degree. Obviously, a digraph contains an Eulerian tour if and only if the digraph
is connected and balanced (see, for example, [?, Theorem 1.7.2]).

Given a digraph D, its adjacency matrix is the (0,1)-matrix A = (ai,j) where ai,j = 1
if vivj is an arc of D, and ai,j = 0 otherwise. Let Γ be the diagonal matrix of the vertex
out-degrees. The Laplacian matrix of D is defined as L = Γ − A. The eigenvalues of L
are called the Laplacian eigenvalues of D.

Now we introduce the definition of the transition digraph. Let D be a digraph with
vertex set Pn,k−1. The arcs of D satisfy the following rule: for any two vertices i1i2 · · · ik−1
and j1j2 · · · jk−1, there is an arc from i1i2 · · · ik−1 to j1j2 · · · jk−1 if and only if is = js−1
for 2 ≤ s ≤ k − 1, and i1 ̸= jk−1. Such a digraph is called the transition digraph of Pn,k.
Let uv be an arc in D with initial vertex u and final vertex v. If u = i1i2 · · · ik−1, then
v = i2i3 · · · ik−1ik, where ik ∈ [n]\{i1, i2, . . . , ik−1}, and so the arc uv may be regarded as
the k-permutation i1i2 · · · ik−1ik. On the other hand, any k-permutation i1i2 · · · ik−1ik in
Pn,k is represented by an arc with initial vertex i1i2 · · · ik−1 and final vertex i2i3 · · · ik−1ik.
Jackson [?] showed that such transition digraph is balanced and connected. One can see
that any Eulerian tour in this transition digraph corresponds to a universal cycle for Pn,k,
which leads to the following proposition directly.

Proposition 2. The number of distinct universal cycles for Pn,k is equal to the number
of Eulerian tours of its transition digraph.

This proposition implies that it is sufficient to consider the number of Eulerian tours
in the transition digraph of Pn,k. Let D be a connected balanced digraph, and let ϵ(D)
denote the number of Eulerian tours of D. We use d+(v) to denote the out-degree of
a vertex v. There is a surprising connection between the number of Eulerian tours and
Laplacian eigenvalues, given by the next lemma.

Lemma 3. ([?]) Let D be a connected balanced digraph with vertex set V . If the Laplacian
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eigenvalues of D are µ1 ≥ µ2 ≥ · · · ≥ µ|V |−1 > µ|V | = 0, then

ϵ(D) =
1

|V |µ1µ2 · · ·µ|V |−1
∏

v∈V
(d+(v)− 1)!. (1)

According to Lemma ??, to count the number of universal cycles for Pn,k, it is enough
to compute the corresponding Laplacian eigenvalues. Let D be the transition digraph of
Pn,k with adjacency matrix A and Laplacian matrix L. Since D is regular, the eigenvalues
of L can be determined by the eigenvalues of A. Hence the eigenvalues of A are the key
to count the number of universal cycles. However, the eigenvalues of A are usually more
difficult to compute directly, since the order of A is n!/(n− k+1)!. In order to determine
the eigenvalues of A, we introduce the representation matrix T of the transition digraph D
(see Definition ?? for details). The first main result of the paper establishes an algebraic
relation of the representation matrix T and adjacency matrix A.

Lemma 4. The minimal polynomial of A divides the characteristic polynomial of T .

From [?, Corollary 3.3.4] and Lemma ??, the eigenvalues of A are contained in the
set of eigenvalues of T , without counting multiplicities. Note that the order of T is∑k−1

i=0
(k−1!)2

(i!)2(k−1−i)! . Clearly, if n is sufficiently large for k, then the order of T is generally
much smaller than the order of A. Therefore, Lemma ?? provides an efficient approach to
find all possible vaules of eigenvalues of A. Once the values of eigenvalues are determined,
we use the standard techniques from spectral graph theory to determine their multiplicities
and thus the number of universal cycles can be obtained from Lemma ??. In particular,
we obtain the exact formulae for Pn,3 and Pn,4 in the following results.

Theorem 5. ([?]) The number of universal cycles for Pn,3 is equal to n
n−2(n−1)n(n−3)

2
−1(n−

2)n−1(n− 3)
(n−1)(n−2)

2 ((n− 3)!)n(n−1).

Theorem 6. The number of universal cycles for Pn,4 is equal to nn−2(n− 1)
n(n−3)

2
−1(n−

2)
n(n−2)(n−4)

3
−2(n−3) (n−1)(3n−2)

2
−1(n−4)(n−1)(n−2)−1(n2−7n+13)

n(n−2)(n−4)
3 ((n−4)!)n(n−1)(n−2).

The rest of this paper is organized as follows. In Section ?? we introduce some defi-
nitions and properties of the adjacency matrix and the so-called representation matrix of
transition digraph with vertex set Pn,k. The detailed proofs of Theorems ?? and ?? are
provided in Section 3 and Section 4, respectively.

2 Adjacency matrix and representation matrix

For the sake of convenience, in this section, we consider the transition digraph D with
vertex set Pn,m, 1 ≤ m ≤ n − 2. At this time the Eulerian tours in D correspond to
universal cycles for Pn,m+1. Let A be the adjacency matrix of D. We use τl(u, v) to
denote the number of walks from u to v in D with length l ≥ 0. Thus the (u, v)-entry of
Al is equal to τl(u, v).

For a square matrix M , let tr(M) denote the trace of M . We note that the diagonal
entry of Al is the number of closed walks of length l. Therefore, the transition digraph D
has tr(Al) closed walks of length l.
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Lemma 7. Let D be the transition digraph with vertex set Pn,m. Then its adjacency
matrix A satisfies the following properties:
(1) tr(A0) = n!/(n−m)!;
(2) if 1 ≤ l ≤ m, then tr(Al) = 0;
(3) if n ≥ m+ 1, then tr(Am+1) = n!/(n−m− 1)!.

Proof. Since A0 is an identity matrix, tr(A0) = |Pn,m| = n!/(n−m)!. Note that a closed
l-walk in D is equivalent to a periodic sequence (c1, c2, . . . , cl) which satisfies the following
conditions: any m consecutive elements form an m-permutation in Pn,m, and any m + 1
consecutive elements form an (m + 1)-permutation in Pn,m+1. This means that, in D,
there are no closed walks of length less than m+ 1. Hence tr(Al) = 0 for any 1 ≤ l ≤ m,
and tr(Am+1) = |Pn,m+1| = n!/(n−m− 1)!.

About τl(u, v), since D is vertex-transitive, there is an automorphism θ such that
θ(u) = 12 · · ·m and θ(v) = β where β ∈ Pn,m. Then τl(u, v) = τl(12 · · ·m,β). Thus, in
order to discuss the number of l-walks in D, it suffices to consider the number of l-walks
from the vertex 12 · · ·m to any other vertex in D.

A multiset is a collection in which elements may occur more than once. The number
of times an element occurs in a multiset is called its multiplicity. The cardinality of a
multiset is the sum of the multiplicities of its elements. Let S = {1, 2, . . . ,m, n[n−m]} be
a multiset, where the multiplicity of the element n is n −m. Let P ∗n,m be the set of all
arrangements of m elements in the n-multiset S. Obviously,

|P ∗n,m| =
m∑

i=0

m!

i!

(
m

i

)
=

m∑

i=0

(m!)2

(i!)2(m− i)! .

Let δ be an integer-valued function on [n] with

δ(i) =

{
i, if i ≤ m,

n, if i > m,

for any 1 ≤ i ≤ n. We shall define a map ϕ : Pn,m 7→ P ∗n,m such that for any permutation
b1b2 · · · bm ∈ Pn,m,

ϕ(b1b2 · · · bm) = δ(b1)δ(b2) · · · δ(bm).
Clearly, ϕ is a surjection. Moreover, for any α ∈ P ∗n,m, the preimage ϕ−1(α) is the set of
all permutations of Pn,m that map to α under ϕ. For convenience, we may assume that all
the arrangements in P ∗n,m = {α(1), . . . , α(|P ∗

n,m|)} are listed by lexicographical order, that
is,

α(1) ≼ α(2) ≼ · · · ≼ α(|P ∗
n,m|),

where α(i) = a
(i)
1 a

(i)
2 · · · a(i)m . In particular, α(1) = 12 · · ·m and α(|P ∗

n,m|) = nn · · ·n.
Based on the fact that D is vertex-transitive, we have the following result.

Lemma 8. Suppose α(i) ∈ P ∗n,m. Then τl(α
(1), b) = τl(α

(1), b′) for any b, b′ ∈ ϕ−1(α(i)).
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We use τ ∗l (α
(1), α(i)) to denote the number of l-walks from 12 · · ·m to any permutation

in ϕ−1(α(i)), that is, τ ∗l (α
(1), α(i)) = τl(α

(1), b) where b ∈ ϕ−1(α(i)).
For l ≥ 0, we let X l = (τ ∗l (α

(1), α(1)), τ ∗l (α
(1), α(2)), . . . , τ ∗l (α

(1), α(|P ∗
n,m|))). Clearly,

X0 = (1, 0, . . . , 0). To study the property of X l, we need some auxiliary tools.
Let ϱ : P ∗n,m×P ∗n,m 7→ {0, 1} and σ : P ∗n,m 7→ {0, 1, . . . ,m} be two functions defined as

follows:

ϱ(α(i), α(j)) =





1, if a
(i)
2 · · · a(i)m = a

(j)
1 · · · a(j)m−1 and a

(i)
1 ̸= a(j)m ,

1, if a
(i)
2 · · · a(i)m = a

(j)
1 · · · a(j)m−1 and a

(i)
1 = a(j)m = n,

0, otherwise,

and
σ(α(i)) = #{a(i)t : 1 ≤ t ≤ m, a

(i)
t = n}.

Now we introduce the definition of the representation matrix for a transition digraph.

Definition 9. Let D be a transition digraph with vertex set Pn,m. The representation
matrix, denoted by T , of D is defined as follows:

• T is a matrix of order |P ∗n,m|;

• for any two arrangements α(i) and α(j) in P ∗n,m, the (i, j)-entry of T is

T (i, j) =





n−m− σ(α(j)), if ϱ(α(i), α(j)) = 1 and a
(i)
1 = n,

1, if ϱ(α(i), α(j)) = 1 and a
(i)
1 ̸= n,

0, otherwise.

We remark that the matrix T can also be viewed as a quotient-like matrix for the
transition digraph D (see, e.g., [?]).

The following lemma describes a relation between the representation matrix T and
the vector X l.

Lemma 10. Let X l = (τ ∗l (α
(1), α(1)), τ ∗l (α

(1), α(2)), . . . , τ ∗l (α
(1), α(|P ∗

n,m|))) and T defined
as above. Then X lT = X l+1.

Proof. Set q = |P ∗n,m|. Let X l = (τ ∗l (α
(1), α(1)), τ ∗l (α

(1), α(2)), . . . , τ ∗l (α
(1), α(q))). It suffices

to prove that, for 1 ≤ s ≤ q,

τ ∗l+1(α
(1), α(s)) =

q∑

i=1

τ ∗l (α
(1), α(i))T (i, s).

Suppose that α(s) = a1a2 · · · am. Let b = b1b2 · · · bm be a permutation in Pn,m such that
b1b2 · · · bm ∈ ϕ−1(α(s)). Then δ(bi) = ai for 1 ≤ i ≤ m. We define three subsets of [n]:

R = {z : z ̸= bm, zb1b2 · · · bm−1 ∈ Pn,m}, R1 = {z ∈ R : z ≤ m} andR2 = {z ∈ R : z > m}.
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Obviously, R = R1∪R2 and R1∩R2 = ∅. For any z ∈ R, there is an arc from zb1 · · · bm−1
to b1b2 · · · bm in the transition graph. If z ∈ R1, then ϕ(zb1 · · · bm−1) = za1a2 · · · am−1. If
z ∈ R2, then ϕ(zb1 · · · bm−1) = na1a2 · · · am−1. It follows that

τ ∗l+1(α
(1), α(s)) = τl+1(α

(1), b)

=
∑

z∈R
τl(α

(1), zb1b2 · · · bm−1)

=
∑

z∈R1

τl(α
(1), zb1b2 · · · bm−1) +

∑

z∈R2

τl(α
(1), zb1b2 · · · bm−1)

=
∑

z∈R1

τ ∗l (α
(1), za1a2 · · · am−1) +

∑

z∈R2

τ ∗l (α
(1), na1a2 · · · am−1).

Since ϕ(b1b2 · · · bm) = α(s), the permutation b1b2 · · · bm contains σ(α(s)) integers greater
than m. It is easy to see that |R2| = n −m − σ(α(s)). Set β = a1a2 · · · am−1. Then we
have

τ ∗l+1(α
(1), α(s)) =

∑

z∈R1

τ ∗l (α
(1), zβ) + (n−m− σ(α(s)))τ ∗l (α

(1), nβ). (2)

On the other hand, by the definition of T , one can see that

m∑

i=1

τ ∗l (α
(1), α(i))T (i, s) =

∑

z∈R3

τ ∗l (α
(1), zβ) + (n− k − σ(α(s)))τ ∗l (α

(1), nβ), (3)

where R3 = {z ≤ m : z ̸= am, zβ ∈ P ∗n,m}. Clearly, R3 = R1. Combining (??) and (??),
the required equality follows.

Lemma 11. Let T and A be the representation matrix and adjacency matrix of a transi-
tion digraph D respectively. If f(λ) is a polynomial such that f(T ) = 0, then f(A) = 0.

Proof. Let f(λ) =
∑s

i=0 ciλ
i such that f(T ) =

∑s
i=0 ciT

i = 0. It suffices to show that

f(A) =
s∑

i=0

ciA
i = 0. (4)

Let u and v be vertices in D (u = v is allowed). Thus, to show (??), it suffices to prove
that

s∑

i=0

ciτi(u, v) = 0. (5)

According to Lemma ??, it is enough to prove that for any α(j) ∈ P ∗n,m,
s∑

i=0

ciτ
∗
i (α

(1), α(j)) = 0. (6)
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By the definition of X l and Lemma ??, Equation (??) is equivalent to

s∑

i=0

ciX
i =

s∑

i=0

ciX
0T i = X0(

s∑

i=0

ciT
i) = X0f(T ) = 0.

Hence the proof is complete.

Proof of Lemma ??. Suppose that p(λ) is the characteristic polynomial of T . The Cayley-
Hamilton Theorem implies that p(T ) = 0. By Lemma ??, one can see that p(λ) is a monic
polynomial that annihilates A. This leads to that the minimal polynomial of A divides
p(λ), which completes the proof.

3 Enumeration formula for k = 3

In this section we re-derive the exact formula for Pn,3, which was first obtained in [?] using
a different method. In this case, we recall that the transition graph D is defined on the
vertex set Pn,2 and P ∗n,2 is the set of all arrangements of 2 elements of {1, 2, n[n−2]}. We
may list the arrangements in P ∗n,2 by lexicographical order, as follows:

12 ≼ 1n ≼ 21 ≼ 2n ≼ n1 ≼ n2 ≼ nn.

Thus, the representation matrix T can be written as

T =




0 0 0 1 0 0 0
0 0 0 0 0 1 1
0 1 0 0 0 0 0
0 0 0 0 1 0 1

n− 2 n− 3 0 0 0 0 0
0 0 n− 2 n− 3 0 0 0
0 0 0 0 n− 3 n− 3 n− 4




.

A simple calculation shows that the characteristic polynomial of T is

pT (λ) = (λ− n+ 2)(λ− 1)(λ+ 1)(λ2 + λ+ n− 2)2.

According to Lemma ??, we obtain that the characteristic polynomial of A is

pA(λ) = (λ− n+ 2)(λ− 1)t1(λ+ 1)t2(λ2 + λ+ n− 2)t3 ,

where t1, t2, t3 are nonnegative integers. Let p and q be two roots of λ2 + λ + n− 2 = 0.
It follows that the eigenvalues of A are listed as n − 2, 1[t1], (−1)[t2], p[t3], q[t3] with their
multiplicites. Using the relationship between eigenvalues and trace of a matrix, it follows
from Lemma ?? that





tr(A0) = t1 + t2 + 2t3 + 1 = n(n− 1),
tr(A) = n− 2 + t1 − t2 + t3(p+ q) = 0,
tr(A2) = (n− 2)2 + t1 + t2 + t3(p

2 + q2) = 0.
(7)
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Since p and q are roots of λ2 + λ+ n− 2 = 0, one can see that
{
p+ q = −1,
p2 + q2 = −2n+ 5.

(8)

Combining (??) and (??), we obtain that t1 = (n − 1)(n − 2)/2, t2 = n(n − 3)/2 and
t3 = n− 1. Then the next result follows directly.

Lemma 12. Let A be the adjacency matrix of the transition digraph defined on Pn,2.
Then the eigenvalues of A are n−2, 1[(n−1)(n−2)/2], (−1)[n(n−3)/2], p[n−1], q[n−1], where p and
q are roots of λ2 + λ+ n− 2 = 0.

Since the out-degree of any vertex in the transition digraph is (n− 2), the Laplacian
matrix L and the adjacency matrix A satisfy the equation L = (n− 2)I − A. Hence the
eigenvalues of L can be obtained by the above lemma.

Corollary 13. Let L be the Laplacian matrix of the transition digraph defined on Pn,2.
Then the eigenvalues of L are 0, (n− 3)[(n−1)(n−2)/2], (n− 1)[n(n−3)/2], (n− 2− p)[n−1], (n−
2− q)[n−1], where p and q are roots of λ2 + λ+ n− 2 = 0.

We are now in a position to prove Theorem ??.

Proof of Theorem ??. Proposition ?? shows that the number of distinct universal cycles
for Pn,3 is equal to the number of Eulerian tours inD. Combining Lemma ?? and Corollary
??, one can see that the number of Eulerian tours in D is

ϵ(D) =
1

n(n− 1)
(n−3) (n−1)(n−2)

2 (n−1)n(n−3)
2 (n−2−p)n−1(n−2−q)n−1

∏

v∈V (D)

(n−3)!. (9)

Since p and q are roots of λ2 + λ+ n− 2 = 0, it follows that

(n− 2− p)(n− 2− q) = n(n− 2).

Therefore, we obtain that

ϵ(D) = nn−2(n− 1)
n(n−3)

2
−1(n− 2)n−1(n− 3)

(n−1)(n−2)
2 ((n− 3)!)n(n−1),

and the result follows.

4 Enumerating formula for k = 4

We now derive the enumeration formula for Pn,4 using this method. Let D be the corre-
sponding transition digraph. Clearly, D is defined on Pn,3. All arrangements in P ∗n,3 can
be listed by lexicographical order, as follows:

123 ≼ 12n ≼ 132 ≼ 13n ≼ 1n2 ≼ 1n3 ≼ 1nn ≼ 213 ≼ 21n ≼ 231 ≼ 23n ≼ 2n1

≼ 2n3 ≼ 2nn ≼ 312 ≼ 31n ≼ 321 ≼ 32n ≼ 3n1 ≼ 3n2 ≼ 3nn ≼ n12 ≼ n13

≼ n1n ≼ n21 ≼ n23 ≼ n2n ≼ n31 ≼ n32 ≼ n3n ≼ nn1 ≼ nn2 ≼ nn3 ≼ nnn
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Table 1: Power sums of the roots
sum value sum value sum value sum value

a1 + a2 1
∑3

i=1 bi 1
∑3

i=1 ci −1 ∑3
i=1 di −1

a21 + a22 −1 ∑3
i=1 b

2
i −1 ∑3

i=1 c
2
i 3

∑3
i=1 d

2
i −2n+ 7

a31 + a32 −2 ∑3
i=1 b

3
i 3n− 11

∑3
i=1 c

3
i 3n− 13

∑3
i=1 d

3
i 3(n− 3)(4− n)− 1

a41 + a42 −1 ∑3
i=1 b

4
i 4n− 13

∑3
i=1 c

4
i −4n+ 19

∑3
i=1 d

4
i 2(n− 3)(3n− 11) + 1

According to Definition ??, one can determine the representation matrix T of D, which is
exhibited in the Appendix. Using MAPLE, we obtain that the characteristic polynomial
of T is

pT (λ) = (λ− n+ 3)(λ+ 1)2(λ2 − λ+ 1)2(λ3 − λ2 + λ− n+ 3)3(λ3 + λ2 − λ− n+ 3)3

(λ3 + λ2 + (n− 3)λ+ (n− 3)2)3.

Then by Lemma ??, it follows that the characteristic polynomial of A is

pA(λ) = (λ− n+ 3)(λ+ 1)t1(λ2 − λ+ 1)t2(λ3 − λ2 + λ− n+ 3)t3(λ3 + λ2 − λ− n+ 3)t4

(λ3 + λ2 + (n− 3)λ+ (n− 3)2)t5 ,

where t1, t2, t3, t4, t5 are indetermined nonnegative integers. We may assume that the roots
of the irreducible factors of pA(λ) are as follows:

• the roots of λ2 − λ+ 1 are denoted by a1 and a2;

• the roots of λ3 − λ2 + λ− n+ 3 are denoted by b1, b2 and b3;

• the roots of λ3 + λ2 − λ− n+ 3 are denoted by c1, c2 and c3;

• the roots of λ3 + λ2 + (n− 3)λ+ (n− 3)2 are denoted by d1, d2 and d3.

The power sums of the above roots are presented in Table ??. Note that the eigenvalues
of A are

n− 3, (−1)[t1], a[t2]1 , a
[t2]
2 , b

[t3]
1 , b

[t3]
2 , b

[t3]
3 , c

[t4]
1 , c

[t4]
2 , c

[t5]
3 , d

[t5]
1 , d

[t5]
2 , d

[t5]
3 .

According to Lemma ??, it follows that




tr(A0) = 1 + t1 + 2t2 + 3t3 + 3t4 + 3t5 = n(n− 1)(n− 2)

tr(A) = n− 3− t1 + t2(a1 + a2) + t3
∑3

i=1 bi + t4
∑3

i=1 ci + t5
∑3

i=1 di = 0

tr(A2) = (n− 3)2 + t1 + t2(a
2
1 + a22) + t3

∑3
i=1 b

2
i + t4

∑3
i=1 c

2
i + t5

∑3
i=1 d

2
i = 0

tr(A3) = (n− 3)3 − t1 + t2(a
3
1 + a32) + t3

∑3
i=1 b

3
i + t4

∑3
i=1 c

3
i + t5

∑3
i=1 d

3
i = 0

tr(A4) = (n− 3)4 + t1 + t2(a
4
1 + a42) + t3

∑3
i=1 b

4
i + t4

∑3
i=1 c

4
i + t5

∑3
i=1 d

4
i = n!/(n− 4)!

Combining with the power sums in Table ??, it follows from the calculation that




t1 = n(n− 2)(n− 4)/3− 1,
t2 = n(n− 2)(n− 4)/3,
t3 = (n− 1)(n− 2)/2,
t4 = (n− 1)(n− 2)/2− 1,
t5 = n− 1.

(10)
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Let L be the Laplacian matrix of D. Since the out-degree of any vertex in D is n− 3, we
have L = (n− 3)I − A. Thus, the eigenvalues of L are

0, (n− 2)[t1], (n− 3− a1)[t2], (n− 3− a2)[t2], (n− 3− b1)[t3], (n− 3− b2)[t3], (n− 3− b3)[t3],
(n− 3− c1)[t4], (n− 3− c2)[t4], (n− 3− c3)[t5], (n− 3− d1)[t5], (n− 3− d2)[t5], (n− 3− d3)[t5].

Since a1 and a2 are roots of λ2 − λ+ 1 = 0, we obtain that a1 + a2 = 1 and a1a2 = 1. It
follows that (n− 3− a1)(n− 3− a2) = n2 − 7n+ 13. Similarly, one can see that





(n− 3− b1)(n− 3− b2)(n− 3− b3) = (n− 3)2(n− 4),
(n− 3− c1)(n− 3− c2)(n− 3− c3) = (n− 1)(n− 3)(n− 4),
(n− 3− d1)(n− 3− d2)(n− 3− d3) = n(n− 3)2.

Thus the product of the nonzero eigenvalues of L, denoted by z, is

z = (n− 2)t1(n2 − 7n+ 13)t2((n− 3)2(n− 4))t3((n− 1)(n− 3)(n− 4))t4(n(n− 3)2)t5 ,

where the values of ti, i = 1, 2, . . . , 5, are from (??). By Lemma ??, the number of
Eulerian tours of D is

ϵ(D) = z
(n− 3)!

n!

∏

v∈V (D)

(d+(v)− 1)!

=
z

n(n− 1)(n− 2)
((n− 4)!)n(n−1)(n−2)

= nn−2(n− 1)
n(n−3)

2
−1(n− 2)

n(n−2)(n−4)
3

−2(n− 3)
(n−1)(3n−2)

2
−1(n− 4)(n−1)(n−2)−1

(n2 − 7n+ 13)
n(n−2)(n−4)

3 ((n− 4)!)n(n−1)(n−2),

which yields the exact formula in Theorem ??.
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Abstract. The future global cellular infrastructure will underpin a va-

riety of applications, such as smart city solutions, urban security, infras-

tructure monitoring, and smart mobility, among others. These emerging

applications require new network functionalities that go beyond tradi-

tional communication. Key network KPIs for 6G include Gb/s data rates,

cm-level localization, µs-level latency, and Tb/Joule energy efficiency.

Additionally, future networks must support the UN’s Sustainable De-

velopment Goals to ensure sustainability, net-zero emissions, resilience,

and inclusivity. The multifunctionality and net-zero emissions agenda

call for a redesign of multi-access technologies for 6G and beyond. In

this talk, I focus on enabling multifunctionality in signals and wireless

transmissions as a means of reducing hardware redundancy and mini-

mizing carbon footprint. We will explore the emerging field of integrated

sensing and communications (ISAC), which represents a paradigm shift

towards combining sensing and communication functionalities within a

single transmission, utilizing a single spectrum and ultimately sharing a

common infrastructure.
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Abstract. Due to the recent drastic demand on AI accelerator hard-

ware, novel very-large-scale (and even wafer-scale) circuit integration ar-

chitectures, which may involve 3D stacking mutliple chiplets onto silicon

interposers with sophisticated layer interconnections, have been intro-

duced. The capacitive crosstalk of the on-chip bus interconnects induces

high power consumption and limits data transmission speed. The clas-

sical solution of adding ground shielding is area-inefficient. One of the

more area-efficient approaches, called bus coding, is to add one or a

few redundant wires which send encoded signals in such a way that the

overall latency and/or power consumption is reduced. The most famous

single-redundancy-wire bus code is the bus invert code, which has been

standardized and adopted in numerous inter-chip bus interconnects ap-

plications. In this talk, various known families of low-power bus codes

will be surveyed. It will be pointed out that many known bus codes may

actually increase, rather than decrease, overall power consumption, after

the codec power consumption is taken into consideration. Lastly, our lat-

est works on low-power bus codes, which can achieve the state-of-the-art

overall power saving, will be presented.
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Abstract

Random numbers play a crucial role in cryptography, since security of crypto-
graphic protocols relies on the assumption of availability of uniformly distributed
and unpredictable random numbers to generate secret keys, nonces, salt, etc. How-
ever, real-world random number generators sometimes fail and produce outputs with
low entropy, leading to security vulnerabilities. The NIST Special Publication (SP)
800-90 series provide guidelines and recommendations for generating random num-
bers for cryptographic applications and describes 10 black-box entropy estimation
methods. This paper evaluates the effectiveness and limitations of the SP 800-90
methods by exploring the accuracy of these estimators using simulated random num-
bers with known entropy, investigating the correlation between entropy estimates,
and studying the impacts of deterministic transformations on the estimators.

Keywords: cryptography, entropy estimation, min-entropy, randomness

1 Introduction

Random numbers are widely used in cryptographic protocols to generate secret keys,
initialization vectors, nonces, salts, etc. The security of these protocols relies on the
assumption that these numbers are generated uniformly at random and are unpredictable.
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However, real-world random number generators sometimes fail and produce outputs with
low entropy, leading to security vulnerabilities [1, 2].

A variety of organizations have developed standards and guidelines on generating
random numbers that are suitable for cryptographic applications, such as the National
Institute of Standards of Technology (NIST) [3, 4, 5, 6], the International Organization
for Standardization (ISO) [7, 8, 9, 10], and Bundesamt für Sicherheit in der Information-
stechnik (BSI) [11, 12, 13].

Cryptographic random number generators are typically composed of multiple compo-
nents, including (i) a noise source that extracts randomness from physical phenomena
(e.g., thermal noise, mouse movements, radioactive decay, free-running oscillator) to gen-
erate a seed and (ii) a pseudorandom number generator (PRNG) (also known as a deter-
ministic random bit generator) that extends the seed to generate a long random-looking
sequence. Since PRNGs are deterministic, the entropy is solely provided by the noise
source, and it is important to measure the unpredictability of the noise source outputs.

Various statistical randomness tests can be applied to measure the quality of the
random numbers. The most commonly used statistical randomness suites are TestU01
[14], DIEHARD [15], DIEHARDER [16], and NIST Special Publication (SP) 800-22
Rev.1 [17]. These tests may not be suitable for assessing noise source outputs, as they
typically have strong biases and would fail these tests.

The unpredictability of noise source outputs is measured using entropy, and two com-
monly used measures of entropy are Shannon entropy and min-entropy. Min-entropy is a
more conservative measure, which is based on the probability of guessing the most-likely
output of a randomness source.

Estimating the entropy of noise source outputs is challenging, because the distribu-
tion of the output values is generally unknown. The BSI standards require stochastic
modeling of the noise source to specify a family of probability distributions to estimate
entropy. Since stochastic modeling may not be possible or practical due to the diversity
and complexity of the random number generators, NIST standards allow using black-box
statistical methods for entropy estimation.

SP 800-90B [4] describes ten entropy estimators: most common value, collision, Markov,
compression, t-tuple, longest repeated substring (LRS), multi most common in window
prediction, lag prediction, multiple Markov Model with Counting (multiMMC) prediction,
and LZ78Y. The minimum of these ten estimates is used to estimate the min-entropy of
the noise source outputs.

Related work. Zhu et al. [18] showed that the collision and compression estimates
provide significant underestimates and proposed a new estimator that achieves better
accuracy for min-entropy. Kim et al. [19] also showed that the compression estimate un-
derestimates min-entropy and proposed two kinds of min-entropy estimators to improve
computational complexity and estimation accuracy by leveraging two variations of Mau-
rer’s test. Hill [20] demonstrated that the collision and compression estimators incorrectly
use the central limit theorem. Hill [20] also claimed that the Markov estimator should not
be directly compared to other estimators since it does not use confidence intervals during
estimation. Additionally, Turan et al. [21] provided a correlation and sensitivity analysis
of statistical randomness tests.
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Contributions. This paper evaluates the accuracy, effectiveness, and limitations of the
SP 800-90B estimators using simulated random numbers with known entropy, investi-
gates the correlation between entropy estimates, and studies the impacts of deterministic
transformations on the estimators.

Organization. Section 2 provides preliminaries on SP 800-90B entropy estimation and
overviews of two correlation metrics. Section 3 describes the paper’s methodology. Section
4 presents experimental results and discussion.

2 Preliminaries

2.1 Min-Entropy

In information theory, entropy is a measure of uncertainty associated with the outcomes
of a random variable. There are different measures of entropy, and NIST SP 800-90B [4]
uses min-entropy, which is a conservative entropy measurement based on the probability
of guessing the most likely output of a randomness source.

Definition 1. Let X be a random variable that takes values from the setA = {x1, x2, . . . , xn}
with probabilities Pr(X = xi) = pi for i = 1, 2, . . . , n. The min-entropy of the random
variable X is defined as

H∞ = min
1≤i≤n

(− log2 pi)

= − log2(max
1≤i≤n

pi).

The random variable X is said to have min-entropy h if the probability of observing
any particular value for X is at most 2−h. When the random variable has a uniform
probability distribution (i.e., p1 = p2 = · · · = pn = 1/n), the variable has the maximum
possible value for the min-entropy, which is log2 n.

In the following chapters of this paper, entropy refers to min-entropy.

2.2 Entropy Estimation Based on SP 800-90B

SP 800-90B [4] describes an entropy source model, that is composed of a noise source,
health tests, and an optional conditioning function. The standard also provides guidelines
for the generation of random numbers using entropy sources and specifies entropy esti-
mation techniques to ensure the randomness and unpredictability of the outputs. These
black-box techniques are applied to noise source outputs and are independent of the in-
ternals of the noise source.

SP 800-90B [4] defines two tracks to estimate the min-entropy of an entropy source:
independent and identically distributed (IID) and non-IID. To determine which track to
use, a number of statistical tests are applied to an output sequence generated by the
entropy source to check the IID assumption. If the output sequence passes these tests,
the source is assumed to generate IID outputs, and only the most common value method
is used to estimate the entropy. Otherwise, the source is assumed to generate non-IID
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outputs, and the minimum of the 10 SP 800-90B estimators is used to estimate the
entropy of the source. Table 1 lists the estimators and corresponding metrics provided
in the standard. Except for collision, Markov, and compression, the estimators provide
support for non-binary noise source outputs.

The estimators take noise source outputs S = (s1, s2, . . . , sL), where si ∈ A =
{x1, x2, . . . , xn}, and return a min-entropy estimate between 0 and log2 n. The colli-
sion, Markov, and compression estimators are only defined for binary inputs (i.e., n = 2).
To establish the final entropy estimate, the standard considers the entropy estimate from
the designers and the impact of the conditioning components. This study focuses on the
black-box estimators, and the additional considerations — including IID testing — are
outside of the scope of this study.

Table 1: Entropy estimators of NIST SP 800-90B

Estimator Metric Support
for n > 2?

Most Common Value Proportion of the most common value in the input
data set

✓

Collision Probability of the most-likely output, depending on
the number of collisions

×

Markov Dependencies between consecutive values ×
Compression Compression amount of the input dataset ×
t-Tuple Frequency of t-tuples ✓
Longest Repeated
Substring (LRS)

Number of repeated substrings ✓

Multi Most Common
in Window Predic-
tion

Number of correct predictions based on the most
common value

✓

Lag Prediction Number of correct predictions based on periodicity ✓
MultiMMC Predic-
tion

Number of correct predictions based on multiple
Markov models

✓

LZ78Y Prediction Number of correct predictions based on a dictionary
constructed using observed tuples

✓

2.3 Correlation Analysis

The Pearson [22] and Spearman [23] correlation coefficients are commonly used metrics
to measure the correlation between two random variables. The correlation coefficients
take values between −1 and 1. A value close to 1 or −1 shows a strong positive or
negative association between variables, whereas a value close to 0 shows a weak associa-
tion. The Pearson correlation [22] measures the strength of a linear relationship between
two random variables, assuming that the variables are distributed normally, whereas the
Spearman correlation [23] describes the monotonic relationship between variables without
the assumption that the variables have normal distribution.

Definition 2. Let X and Y be random variables. The Pearson correlation coefficient r
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between a given paired dataset {(x1, y1), (x2, y2), . . . , (xn, yn)} is defined as

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where n is the sample size, xi and yi are sample points, x̄ is the sample mean of X , and
ȳ is the sample mean of Y .

Definition 3. Let X and Y be random variables. The Spearman correlation coefficient
ρ between a given paired dataset {(x1, y1), (x2, y2), . . . , (xn, yn)} is defined as

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
,

where n is the sample size, and di is the difference between the rank of the paired samples.

3 Methodology

The goal of this study is to answer the following questions regarding the entropy estimators
introduced in SP 800-90B [4]:

1. How closely do the entropy estimators match the true entropy of the source?

2. How correlated are the entropy estimators?

3. How do different deterministic transformations impact the entropy estimate?

3.1 Entropy Estimation using Known Distributions

One approach to understanding the accuracy of the entropy estimators is to simulate
various sequences with known probability distributions (hence, known entropy), and check
the difference between the estimated entropy and the true entropy. In cases where certain
entropy estimators consistently yield outlier results compared to others, it is important to
investigate the underlying reasons for such discrepancies. This could involve examining
the specific characteristics of the input data, inherent biases in the estimation techniques,
or the impacts of using different input lengths and sample sizes.

3.2 Correlation of the Entropy Estimators

Understanding the correlation between different entropy estimators can provide insights
into the reliability, robustness, and limitations of the estimators for cryptographic ap-
plications. One aspect to consider is the agreement between different entropy estimation
methods by assessing whether they tend to produce similar entropy estimates for the same
set of input sequences. This study employed correlation analysis to quantify the relation-
ship between pairs of entropy estimates and used the Pearson and Spearman correlation
coefficients.
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3.3 Impact of Deterministic Transformations

The noise source outputs are typically processed using deterministic conditioning functions
to reduce their statistical bias and improve their entropy rate (i.e., entropy per bit). The
impacts of a number of deterministic transformations that are applied to the output
sequence are of interest here.

Let S = (s1, s2, . . . , sL) be a noise source output with length L, and let S ′ = (s′1, s
′
2, . . . , s

′
L)

be generated from S via a deterministic transformation. This study uses the following
transformations:

• Reverse: This transformation generates a new sequence by changing the order
of the sequence. The generated sequence S ′ = (sL, sL−1, . . . , s2, s1) is constructed
with s′i = sL−i+1 for each i = 1, 2, . . . , L. For example, the reversed sequence of
S = (10110001110010) is S ′ = (01001110001101).

• Binary Derivative: This transformation generates a new sequence by XORing
(i.e., modulo 2 addition) the consecutive bits of the sequence. The generated se-
quence S ′ = (s′1, s

′
2, . . . , s

′
L) is constructed with

s′i =

{
si ⊕ si+1, i = 1, 2, . . . , L− 1,

s1, i = L.

For example, the binary derivative of S = (10110001110010) is S ′ = (11010010010111).

• t-Rotation: This transformation applies a t-bit rotation to the input sequence, i.e.,
t-bit rotation of S = (s1, s2, . . . , sL) is S

′ = (st+1, st+2, . . . , sL, s1, s2, . . . , st), where
t = 16, 64, 128, or 1024. For example, 2-bit rotation of S = (101100011100 10) is
S ′ = (11000111001010).

4 Experimental Results

4.1 Simulated Datasets

The following datasets with known entropy were simulated for the experiments:

1. Uniform distribution with full entropy. The datasets are generated using
the Cipher Block Chaining (CBC) mode of the block cipher Advanced Encryption
Standard (AES) [24]. Sequences are generated for three different sample sizes (i.e.,
the size of the noise source output): binary, 4-bit, and 8-bit. For each sample size,
1000 sequences of length 1 000 000 were generated. In these sequences, all outputs
are assumed to have an equal probability of occurring, and are independent. Hence,
the outputs have full entropy.

2. Biased binary distribution with entropy=0.5. The dataset follows a biased
binary distribution, where the probability of observing a 0 is 0.7, and the probability
of observing a 1 is 0.3. For each sample size, 1000 sequences of length 1 000 000 were
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generated. In these sequences, the expected entropy of a sequence is 0.5 per bit. This
data is generated using the random number generator Mersenne Twister (MT19937)
in C++.

3. 4-bit near-uniform with entropy=0.5. This dataset follows a 4-bit near-uniform
distribution, where the probability of observing the template 0000 is 0.25, and the
probability of observing other 4-bit templates is 0.05. For each sample size, 1000
sequences of length 1 000 000 were generated. In these sequences, the expected
entropy of a sequence is 0.5 per bit. This data is generated using the random
number generator in C++.

4. 8-bit near-uniform with entropy=0.5. This dataset follows an 8-bit near-
uniform distribution, where the probability of observing the template 00000000

is 0.06, and the probability of observing other 8-bit templates is 0.003686. For each
sample size, 1000 sequences of length 1 000 000 were generated. In these sequences,
the expected entropy of a sequence is 0.5 per bit. This data is generated using the
random number generator in C++.

4.2 Accuracy of Entropy Estimators

Table 2 compares the actual and estimated entropy values for binary, 4-bit, and 8-bit
uniformly distributed data with full entropy. It shows that compression and collision esti-
mates produce the smallest estimates for binary data, which is consistent with the findings
of Zhu et al. [18] and Kim et al. [19]. Figure 1 in Appendix shows the distribution of the
entropy estimation, and compression, and LRS estimators seem to show high variation
compared to other estimators.

Table 2: Mean and standard deviation of entropy estimators for binary, 4-bit, and 8-bit sources
with full entropy

1-bit 4-bit 8-bit
Mean Std. Dev. Mean Mean/bit Std. Dev. Mean Mean/bit Std. Dev.

MCV 0.9951 0.0009 3.9514 0.9879 0.0056 7.6736 0.9592 0.0222
Collision 0.9141 0.0194 * * * * * *
Markov 0.9982 0.0011 * * * * * *

Compression 0.8535 0.0287 * * * * * *
t-Tuple 0.9294 0.0104 3.7799 0.9450 0.0149 7.6736 0.9592 0.0222
LRS 0.9785 0.0262 3.8928 0.9732 0.1131 7.7468 0.9683 0.1878

Multi MCW 0.9954 0.0114 3.9635 0.9909 0.0662 7.8169 0.9771 0.1315
Lag Prediction 0.9957 0.0072 3.9677 0.9919 0.0416 7.8116 0.9764 0.1679
MultiMMC 0.9951 0.0129 3.9616 0.9904 0.0778 7.8197 0.9775 0.1302

LZ78Y 0.9956 0.0096 3.9616 0.9904 0.0778 7.8198 0.9775 0.1302

The same experiments were repeated for biased binary distribution, 4-bit near-uniform
distribution, and 8-bit near-uniform distribution, and the results are summarized in Table
3. Similar to uniform distribution, the compression estimate underestimates entropy
for biased distributions. However, LRS and lag prediction overestimate the entropy by
approximately 50%. Similar results were obtained for 4-bit and 8-bit samples.
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Table 3: Mean and standard deviation of entropy estimators of datasets for biased binary, 4-bit
near-uniform, and 8-bit near-uniform distributions

Biased Binary Dist. 4-bit Near-uniform 8-bit Near-uniform
Mean Std. Dev. Mean Mean/bit Std. Dev. Mean Mean/bit Std. Dev.

MCV 0.5122 0.0009 1.9872 0.4968 0.0050 4.0169 0.5021 0.0160
Collision 0.5095 0.0020 * * * * * *
Markov 0.5146 0.0011 * * * * * *

Compression 0.3224 0.0009 * * * * * *
t-Tuple 0.5031 0.0116 1.9710 0.4928 0.0197 3.9993 0.4999 0.0380
LRS 0.7692 0.0205 3.2364 0.8091 0.0954 6.9466 0.8683 0.1884

Multi MCW 0.5121 0.0055 1.9860 0.4965 0.0200 4.0063 0.5008 0.0738
Lag Prediction 0.7756 0.0263 3.2812 0.8203 0.0923 6.9558 0.8695 0.2984
MultiMMC 0.5118 0.0055 1.9861 0.4965 0.0200 4.1557 0.5195 0.1028

LZ78Y 0.5118 0.0055 1.9860 0.4965 0.0200 4.1556 0.5194 0.1027

4.3 Correlations of Estimators

The Pearson and Spearman coefficients were used to measure the correlation between en-
tropy estimators. Using 200 binary sequences of length 1 000 000, Table 4 and Table 5 show
the Pearson and Spearman correlations among different estimators, respectively. Accord-
ing to Table 4, a strong or moderate correlation was observed for the (MCV, Markov),
(MultiMCW, MultiMMC) (MultiMMC, LZ78Y), and (MultiMCW, LZ78Y) estimators
using Pearson’s metric. When the same experiments were conducted using Spearman’s
metric, a correlation was still observed between (MCV, Markov). However, (MultiMMC,
LZ78Y) and (MultiMCW, LZ78Y) correlations were no longer as strong. Additionally, the
correlation between (Markov, LZ78Y) was observed to be strong for Spearman’s metric.

Table 4: Pearson correlation among different estimators for uniform distribution with full
entropy

MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 -0.0531 0.5338 -0.1170 0.0564 -0.0506 0.0535 -0.0745 0.2174 0.2610

Collision 1.0000 0.1315 -0.0092 0.0163 0.0563 0.0071 -0.0281 -0.0286 -0.0856
Markov 1.0000 0.0347 0.0821 -0.0158 0.0261 -0.0581 0.1767 0.2278

Compression 1.0000 -0.0422 0.0284 0.0281 -0.0011 0.1094 0.0756
t-Tuple 1.0000 0.0388 0.0444 0.0583 0.0760 0.0765
LRS 1.0000 -0.0449 0.0059 -0.0557 -0.0505

MultiMCW 1.0000 -0.0063 0.4702 0.8063
Lag Prediction 1.0000 -0.0363 -0.0281
MultiMMC 1.0000 0.4693

LZ78Y 1.0000

Table 5: Spearman correlation among different estimators for uniform distribution with full
entropy

MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 -0.0426 0.5410 -0.1012 0.0636 -0.0317 -0.0601 0.0314 0.1825 0.4991

Collision 1.0000 0.1224 0.0282 0.0254 0.0035 0.0140 0.0009 0.0017 -0.1207
Markov 1.0000 0.0491 0.0954 -0.0215 -0.0454 0.0510 0.1784 0.6420

Compression 1.0000 0.0138 0.1014 0.0202 0.0200 0.1711 0.1143
t-Tuple 1.0000 0.0714 -0.0104 -0.0789 0.0316 0.0575
LRS 1.0000 0.0396 -0.0641 0.0187 0.0008

MultiMCW 1.0000 -0.0593 0.0784 -0.1028
Lag Prediction 1.0000 0.0178 0.1391
MultiMMC 1.0000 0.1982

LZ78Y 1.0000
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4.4 Impact of the Transformations

For this experiment, 200 uniformly distributed sequences of length 1 000 000 with full en-
tropy were used. These sequences were transformed using a reversing, binary derivative
and t-rotation for t = 16, 64, 128, 1024. Entropy estimates for the original and trans-
formed sequences were compared, and their Pearson and Spearman correlation coefficients
are listed in the Table 6 and Table 7, respectively. Reversing and rotating the input se-
quences did not have any impact on its entropy estimation for the MCV, collision, Markov,
t-tuple, and LRS estimators (hence, the same estimate is obtained) for either of the cor-
relation metrics. Among different transformations, binary derivative seems to have the
highest impact on the prediction based estimates, namely multiMCW, Lag, multiMMC
and LZ78Y.

Table 6: Pearson Correlation according to the estimation results of transformed sequences

Original Reversed Bin. Drv. 16-rot. 64-rot. 128-rot. 1024-rot.
MCV 1.0000 1.0000 -0.0289 1.0000 1.0000 1.0000 1.0000

Collision 1.0000 1.0000 -0.0160 1.0000 1.0000 1.0000 1.0000
Markov 1.0000 1.0000 0.4586 1.0000 1.0000 1.0000 1.0000

Compression 1.0000 0.3334 0.4887 0.3379 0.3374 0.3927 0.3368
t-Tuple 1.0000 1.0000 0.1144 1.0000 1.0000 1.0000 1.0000
LRS 1.0000 1.0000 0.7013 1.0000 1.0000 1.0000 1.0000

Multi MCW 1.0000 0.1301 0.8455 0.9999 0.9998 0.9997 0.9994
Lag Prediction 1.0000 0.1492 0.0037 0.9983 0.9971 0.9962 0.9915
MultiMMC 1.0000 0.0564 -0.0189 0.9977 0.9962 0.9962 0.8329

LZ78Y 1.0000 0.0598 0.1510 0.9961 0.9927 0.9918 0.9738

Table 7: Spearman Correlation according to the estimation results of transformed sequences

Original Reversed Bin. Drv. 16-rot. 64-rot. 128-rot. 1024-rot.
MCV 1.0000 1.0000 -0.0432 1.0000 1.0000 1.0000 1.0000

Collision 1.0000 1.0000 0.0565 1.0000 1.0000 1.0000 1.0000
Markov 1.0000 1.0000 0.4030 1.0000 1.0000 1.0000 1.0000

Compression 1.0000 0.3090 0.5283 0.3053 0.3053 0.3685 0.3094
t-Tuple 1.0000 1.0000 0.0964 1.0000 1.0000 1.0000 1.0000
LRS 1.0000 1.0000 0.5425 1.0000 1.0000 1.0000 1.0000

Multi MCW 1.0000 0.8795 0.0170 0.9975 0.9954 0.9947 0.9869
Lag Prediction 1.0000 0.3607 -0.0282 0.9822 0.9717 0.9603 0.9219
MultiMMC 1.0000 0.3762 0.2872 0.9162 0.8772 0.8770 0.6943

LZ78Y 1.0000 0.6069 0.3580 0.9941 0.9884 0.9867 0.9530

5 Discussion

In this paper, we studied the black-box entropy estimators described in NIST SP 800-90B.
We observed that compression and collision estimates both underestimate the entropy
both for uniform and biased distributions, which is consistent with the findings of Zhu
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et al. [18] and Kim et al. [19]. The remaining estimates are close to the true entropy
for the uniform distribution. However, LRS and lag prediction overestimate entropy for
binary, 4-bit, and 8-bit sequences for biased distributions. Understanding the reasons for
this gap based on the details of the estimators is planned for future work.

These experiments show a strong correlation between the Markov and MCV tests for
uniform distribution. Additionally, we observed that taking binary derivation significantly
changes the entropy estimates, especially for prediction-based estimators.

We expect the provided results to help improve the accuracy of NIST’s entropy esti-
mation strategy and promote similar studies to consider the impacts of commonly used
conditioning or post-processing functions.
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Figure 1: Distribution of entropy estimates for full-entropy binary inputs
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Abstract

We show that a binary sequence s = (s1, s2, . . . ) ∈ {0, 1}ω which is zero outside
some arithmetic progression (residue class) [r]n, i.e. supp(s) ⊂ [r]n, maintains this
property under forward and backward iteration of the continued fraction operator
K: We still have supp(Ku(s)) ⊂ [r]n for all u ∈ Z.

The isometry K implements the Berlekamp-Massey Algorithm in such a way
that K(s) is the discrepancy sequence of s and at the same time is the sequence
of encodings of the partial denominators of the continued fraction expansion of
G(s) =

∑
k∈N skx

−k ∈ F2[[x
−1]].

Furthermore, the property s2n−1 = s2n, ∀n ∈ N is maintained under Ku, u ∈ Z.
Keywords: Berlekamp-Massey Algorithm, Invariance under the BMA, linear

complexity, sequences with restricted support.

Notation:
N = {1, 2, 3, . . . }, A = {0, 1} is the binary alphabet
0/1-inversion: 0 = 1, 1 = 0, 10011 = 01100
A∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . . } and Aω are the finite, resp. infinite words over A
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1 Introduction

The continued fraction operator K is a modification of the well-known Berlekamp-Massey
Algorithm (BMA). K delivers the linear complexity profile and computes the discrepancy
sequence in such a way that it is immediately an encoding of the partial denominators
(PD) of the binary sequence interpreted as formal power series.

We show that this operator K, an isometry on Aω, with A = {0, 1}, has the property
that sequences s whose support (indices i ∈ N with si 6= 0) lies within some residue
class i ≡ r mod n, supp(s) ⊂ [r]n, are mapped to sequences Ku(s), which again satisfy
supp(Ku(s)) ⊂ [r]n, and this is valid for any number u ∈ Z of iterations.

We shall also see that the property s2n−1 = s2n, ∀n ∈ N, i.e. all 0s and 1s appear in
pairs or runs of even length, is preserved by Ku(s), u ∈ Z as well.

2 Continued Fractions, Partial Denominators,
the Berlekamp-Massey-Algorithm, and the Isometry K

The usual way to compute the continued fraction expansion (CFE) of a formal power
series s :=

∑
k∈N skx

−k ∈ F2[[x
−1]] starts with s(0) := s, b0 := 0 and then iteratively sets

∀i ∈ N : s(i) :=
1

{s(i−1)} =
1

s(i−1) − bi−1
, bi := ⌊s(i)⌋, yielding s = 0 +

1 |
|b1

+
1 |
|b2

+ · · · ,

where s(i) ∈ F2((x
−1)) has positive degree for i ∈ N, the floor function ⌊s(i)⌋ gives the

polynomial part bi ∈ F2[x] as partial denominator (PD), and we have {s(i)} ∈ F2[[x
−1]].

We also denote the CFE by s = [b1, b2, b3, . . . ].
The convergents Ai/Bi ∈ F2(x) to s are obtained via Perron’s [13] schema, see Table 1.

We use the Thue-Morse sequence s = 01101001 . . . (see [1]) with G(s) = 1 |
|x2+x+1

+ 1 |
|x2+1

+
1 |
|x2 + · · · as example (b0 = 0 is omitted).

i −1 0 1 2 3 4 . . .
bi x2 + x+ 1 x2 + 1 x2 x2 + 1 . . .
Ai 1 0 1 x2 + 1 x4 + x2 + 1 x6 + x2 . . .
Bi 0 1 x2 + x+ 1 x4 + x3 + x x6 + x5 + x3 + x2 + x+ 1 x8 + x7 + x6 + x3 + 1 . . .

Table 1: Schema for PDs bi ∈ F2[x] and convergents Ai/Bi ∈ F2(x).

The initial values are A−1 = B0 = 1, B−1 = A0 = 0 as in the real case, and then
Ai := bi ·Ai−1+Ai−2, Bi := bi ·Bi−1+Bi−2. Setting r := Ai/Bi (a rational, i.e. ultimately
periodic sequence), we have rk = sk at least for 1 ≤ k ≤ deg(Bi) + deg(Bi−1).

The continued fraction expansion and thereby the linear complexity profile is readily
computed by the well-known Berlekamp-Massey-Algorithm (BMA).

In order to read off the PDs directly from the discrepancy sequence (dk) – any sequence
with dk = 0, whenever the previous approximation also generates the current sequence

Sequences and Their Applications (SETA) 2024 2



Continued fractions of sequences with restricted support

bit sk, and dk = 1 otherwise –, we have to make 3 simple, but crucial adjustments to the
Berlekamp-Massey algorithm, as given by Dornstetter [4]:
1. Start with the convergents A−1/B−1 = 1/0 and A0/B0 = 0/1.
2. Use the feedback polynomial, not its reciprocal, the connection polynomial.
3. Do not normalize the polynomials (this has an effect only for char Fp ≥ 3).

Only then, the resulting isometryK satisfies the observations on the support described
in this paper. K is obtained as composition of three functions (see [15]),

K : sequence
G7−→ formal power series

K7−→ continued fraction expansion
π∞
7−→ discrepancy seq.

We first treat the case of irrational that is aperiodic sequences:

Fω
2 ∋ s

G7−→ G(s, x) =
∞∑

k=1

skx
−k ∈ F2[[x

−1]]

G(s, x) =
1 |

|b1(x)
+

1 |
|b2(x)

+
1 |

|b3(x)
+ · · · K7−→ (b1, b2, b3, . . . ) ∈ (F2[x]\F2)

ω

(bi)
∞
i=1

π∞
7−→ π(b1)π(b2)π(b3). . . = K(s) ∈ Fω

2 ,

where

π : F2[x]\F2 ∋ p(x) =

g∑

k=0

akx
k 7→ π(p) = 0g−1ag . . . a1a0 ∈ Π2

and
Π2 := {(a1, . . . , an) ∈ F∗2 | ∃g ∈ N : n = 2g, a1 = · · · = ag−1 = 0, ag 6= 0}

is the set of polynomial encodings. Π2 ∪ 0ω is a complete prefix code.
In the rational case, the CFE of G(s) has only finitely many PDs and thus

s
G7−→ G(s) = 0+

1 |
|b1(x)

+ · · ·+ 1 |
|bn(x)

K7−→ (b1, . . . , bn) ∈ (F2[x]\F2)
∗ π∞
7−→ π(b1) . . . π(bn)0

ω

= K(s) ∈ Fω
2 , including K(0ω) = 0ω with the empty tuple from (F2[x]\F2)

∗.
K is an isometry on Fω

2 , see [15, Thm. 5], and we have the following connection to
the linear complexity: Let n0 be the position (in s and K(s)) at the end of an encoding
π(bi−1), n1 = n0 + g the position of the leading coefficient ag in π(bi), where g = deg(bi)
and n2 = n1 + g = n0 + 2g is the position of the constant term a0 of bi. At position
n1 the linear complexity jumps from n0/2 to n2/2 that is by g = deg(bi) and remains
otherwise constant within the positions of the encoding π(bi). The linear complexity
deviation L(n)− n/2 is negative from position n0 + 1 to n1 − 1, it is positive afterwards
until n2 − 1 and zero in n2 as well as in n0 and in general at the end of every encoding π.

Lemma 1. The linear complexity is

L(n) =





n0/2
n0/2

n0/2 + g
n2/2
n2/2

= n/2 +





0, n = n0,
−(n− n0)/2, n0 < n < n1,

g/2, n = n1,
+(n2 − n)/2, n1 < n < n2,

0, n = n2.

Proof. See Theorem 6 and Proposition 8 in [15].
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K is a discrepancy sequence for s since from n0 to n1 − 1 it is zero, no adjustment
of the LFSR length is necessary, at n1 it is nonzero, and the linear complexity / LFSR
length increases by g. From n1 to n2, with L ≥ n/2, no change in the LFSR length will
take place.

The implementations of the BMA by Massey [9], by Lidl/Niederreiter [8], and the
BMA∗ by Dornstetter [4] / Vielhaber [15] are pairwise different in the part ag−1 . . . a1a0
between n1 and n2, but all coincide (of course) in the discrepancy sequence being zero
from n0 + 1 to n1 − 1, 0g−1, followed by some nonzero symbol at n1.

However, only the Dornstetter / K implementation described here yields immediately
useful information on the PDs and only for this BMA∗ implementation, the implications
about supports and residue classes in this paper are valid. Fast implementations are given
in [2] [11] [12].

Example 2. for K
(i) Rational sequence: Let s = (sk)

∞
k=1 = 1(110)ω ∈ Fω

2 , then

G(s) =
1

x
+

x+ 1

x3 + 1
=

x3 + 1 + x2 + x

x4 + x
=

1
x4+1+x+1
(x+1)3

=
1 |

|x+ 1
+

1 |
|x2 + 1

.

Thus K(G(s)) = (x+1, x2+1) ∈ F2[x]
∗ and K(s) = 1101010ω ∈ Fω

2 , where 11 = π(x+1),
0101 = π(x2 + 1).

(ii) Irrational sequence: The (Prouhet-) Thue-Morse (-Hedlund) sequence
s = 0110.1001.1001.0110.1001. . . is quadratic-algebraic with ultimately periodic CFE G(s)
= [x2 + x+1, (x2 +1, x2, x2 +1)ω] (the analogue of Lagrange’s result [7] for formal power
series). We infer K(s) = 0111(0101 0100 0101)ω. Note that supp(K(s)) ⊂ [0]2 ∪̇ {3}, but
supp(s) 6⊂ [r]n for no r, n: A single bit outside the residue class completely destroys the
pattern.

3 The Main Result: Arithmetic Progressions as Supersets of
the Support of a Binary Sequence are Invariant under K

Definition 3. (i) For n ∈ N, r ∈ Z (usually we take 0 ≤ r < n), let [r]n = {k ∈ N | k ≡
r (mod n)} ⊂ N be an arithmetic progression (residue class from Z/nZ restricted to N).
We will use the [r]n as supersets for index sets of formal power series.

(ii) Let supp(s) := {k | sk 6= 0} ⊂ N be the support of s ∈ Aω or s ∈ F2[[x
−1]].

We first mention a technical lemma from [11],which we shall need in parts II and III
of the proof of Theorem 6 and in the proof of Theorem 9:

Lemma 4. Equivalence Lemma [11, Lemma 11]
Let A,B be two consecutive PDs of a CFE. Replacing A,B by the three PDs

A+ 1, 1, 1 +B does not change the overall value of the CFE.

Proof. See Lemma 11 in [11], also ...
Using Perron’s schema with A,B and with A+ 1, 1, 1 +B both yield the same result:

Sequences and Their Applications (SETA) 2024 4
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x | y
A

| Ay + x
B

| ABy +Bx+ y and

x | y
A+1

| Ay + y + x
1

| Ay+y + x+y
B+1

| ABy + Bx+Ay + x+ Ay + y+x

(underlined parts cancel for F2, the lemma does not carry over to char ≥ 3).

We have the following lemma concerning the position of nonzero coefficients in PDs,
given a formal power series s with supp(s) ⊂ [r]n:

Lemma 5. Let supp(s) ⊂ [r]n for some n ∈ N, 0 ≤ r ≤ n.
(i) The first PD, b1, has degree g1 ∈ [r]n and the nonzero coefficients ak, if any, are

also at indices k ∈ [r]n.
(ii) The second PD, b2, has degree g2 and nonzero coefficients’ indices in [−r]n.
(iii) All PDs with odd index, b3, b5, . . . behave as b1 does, with support in [r]n. The

PDs with even indices have support in [−r]n.

Proof. (i) From π(b1) = 0g1−1ag1 . . . a0 and supp(s) ⊂ [r]n, we have g1 = deg(b1) ∈ [r]n.
The distance from ag1 of all nonzero coefficients in π is a multiple of n and thus their
index is in the same residue class, k ∈ [g1]n = [r]n.

(ii) With |π(b1)| = 2 · g1, the position of ag2 in π(b2) is at 2g1+ g2 ≡ 2r+ g2 ∈ [r]n and
hence g2 ∈ [−r]n. As in (i) the same applies for the further nonzero coefficients: ak 6= 0
implies k ∈ [−r]n.

(iii) From |π(b1)π(b2)| = 2(g1+g2) ≡ 2(r+(−r)) ≡ 0 mod n, we see that the situation
for the degree g3 of b3 is the same as for b1 in (i), then b4 behaves as in (ii) and the general
case follows by induction.

We now come to the Main Theorem of the paper:

Theorem 6. Invariance of Arithmetic Progressions under K
For any given n ∈ N, 0 ≤ r ≤ n − 1, for all binary sequences s ∈ Aω such that the

support of s is contained in [r]n i.e.

G(s, x) =
∑

k∈N
skx

−k =
∑

k∈[r]n

skx
−k

the resulting sequences Ku(s) again have support supp(K(u)(s)) ⊂ [r]n, for all u ∈ Z.
In other words ∀u ∈ Z, ∀n ∈ N, ∀0 ≤ r < n :

supp(s) ⊂ [r]n ⇐⇒ supp(Ku(s)) ⊂ [r]n ⇐⇒ (Ku(s))k = 0, ∀k 6∈ [r]n.

Proof. For n = 1, [0]1 = N, nothing has to be shown. Otherwise, we proceed in 5 steps.
I. “Blow-Up” / “Telescoping-out” (from s to K(s) at [0]n)
We start with r = 0, u = 1, any n ≥ 2 ∈ N. Let s ∈ Aω have supp(s) ⊂ [0]n.
Set αk := snk, k ∈ N, the subsequence with indices from [0]n. By construction,

G(s, x) =
∑

k∈N
skx

−k =
∑

k∈[0]n

skx
−k =

∑

k∈N
sk·n (x

n)−k =
∑

k∈N
αk (x

n)−k = G(α, xn).
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Let now β := K(α) be the CFE of G(α, y) (where no restrictions on the support
apply). Then β = π(b1)π(b2) . . . . is the concatenation of the encodings of the PDs of

G(α, y) = 1 |
|b1(y) +

1 |
|b2(y) + · · · . We now do a “Blow-Up” or “Telescoping-out” and set

y := xn, effectively introducing n− 1 zeroes between any two symbols from β.
From π(p(y)) = π(

∑g
j=0 pjy

j) = 0g−11pg−1pg−2 . . . p1p0, we then get

π(p(xn)) = π(

g∑

j=0

pjx
n·j) = 0n·g−110n−1pg−10

n−1pg−2 . . . 0
n−1p10

n−1p0,

where only the powers of x which are multiples of n are used for the pj. This gives

G(α, xn) =
1 |

|b1(xn)
+

1 |
|b2(xn)

+
1 |

|b3(xn)
+ · · · = G(s, x).

Now, 0n·g−110n−1pg−10n−1pg−2 . . . 0n−1p10n−1p0 has the property that the indices of its
coefficients pj lie in the set [0]n. Since this is valid for all π(bi(x

n)), and each of these π(·)
have a length which is a multiple of n, namely n · 2 · deg(bi(y)), the whole result K(s) is
covered by [0]n.

II. “Last Shift” (from s,K(s) ⊂ [0]n to s,K(s) ⊂ [n− 1]n)
Let supp(s) ⊂ [n− 1]n, n ≥ 2. Let ŝ := (0, s1, s2, . . . ), hence supp(ŝ) ⊂ [0]n and with

part I also supp(K(ŝ)) ⊂ [0]n. Furthermore, we have G(ŝ) = x−1 ·G(s).
The CFE of G(ŝ) = [b1, b2, b3, . . . ] consists only of PDs with deg(bi) a multiple of n,

in particular deg(bi) > 1. Applying the Equivalence Lemma, we generate a new, but
equivalent CFE G(ŝ) = [b′1, b

′
2, b
′
3, . . . ], where b

′
2i−1 has constant term zero by, if necessary,

inverting this term, introducing a pseudo-PD ‘1’ as b′2i, inverting the constant term of the
next PD b′2i+1, and so on.

We then multiply the whole CFE by x, which amounts to alternately divide and
multiply the PDs by x:

G(s) = x ·G(ŝ) = [b′1/x, b
′
2 · x, b′3/x, . . . ],

where the division at odd indices is well-defined, since deg(b′2i−1) > 1 and the constant
term is zero. Also, the pseudo-PDs ‘1’ occur only at even indices and are replaced by x.

Now, in K(s) = π∞(b′1/x, b
′
2 · x, b′3/x, . . . ), the odd-indexed b′2i−1/x have support and

degree in [−1]n, the even-indexed b′2i · x have support and degree in [1]n, including the
special case x from ‘1’ with degree 1. Each pair (b′2i−1, b

′
2i) has an overall degree sum from

[−1]n+[1]n = [0]n, allowing the induction as in Lemma 5, and giving supp(K(s)) ⊂ [−1]n.
III. “First Shift” (from s,K(s) ⊂ [0]n to s,K(s) ⊂ [1]n)
This is essentially a repetition of part II, shift direction and parity inverted.
Let supp(s) ⊂ [1]n, n ≥ 2. Let first s1 = 0. Let ŝ := σ(s) := (s2, s3, . . . ), hence

supp(ŝ), supp(K(ŝ)) ⊂ [0]n. Also, G(ŝ) = x ·G(s).
The CFE of G(ŝ) = [b1, b2, b3, . . . ] consists only of PDs with n | deg(bi).
As before, by Lemma 5, we generate an equivalent CFE G(ŝ) = [b′1, b

′
2, b
′
3, . . . ], where

now the even b′2i have constant term zero, applying Lemma 5, introducing pseudo-PDs ‘1’
as b′2i+1 at odd index.
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We then divide by x, giving G(s) = G(ŝ)/x = [b′1 ·x, b′2/x, b′3 ·x, . . . ], where the division
at even indices is well-defined, as before and the pseudo-PDs ‘1’, now at odd indices, are
again replaced by x.

Now, in K(s) = π∞(b′1 · x, b′2/x, b′3 · x, . . . ), the odd-indexed b′2i−1 · x have support and
degree in [1]n, including the special case x from ‘1’ with degree 1. The even-indexed b′2i/x
have support and degree in [−1]n. Thus, again each pair (b′2i−1, b

′
2i) has an overall degree

sum from [1]n + [−1]n = [0]n, allowing the induction as in Lemma 5.

For s1 = 1, x ·G(s) = 1+G(ŝ). Observe that 1+ [b1, b2, . . . ] = 0+ [1, b1+1, b2, . . . ] by
Lemma 5 with (1, b1) ≡ (0, 1, b1 + 1), see [11, Cor. 12], which fits neatly into the overall
process, the pseudo-PD being at an odd index. All in all, supp(K(s)) ⊂ [1]n.

IV. “General Shift” (from [r]n to [r ± 1]n)

Let r 6∈ {−1, 0,+1} and supp(s) ⊂ [r]n. By the condition on r, all PDs have degree

at least 2 and all constant terms are zero, also the first bit s1 = 0. The sequence
←
s :=

(s2, s3, s4, . . . ) has supp(
←
s ) ⊂ [r − 1]n, the sequence

→
s := (0, s1, s2, . . . ) has supp (

→
s ) ⊂

[r + 1]n, by construction.

Hence, fromG(s) =: [b1, b2, b3, . . . ], we immediately obtainG(
←
s ) = [b1/x, b2·x, b3/x, . . . ]

and G(
→
s ) = [b1 · x, b2/x, b3 · x, . . . ], all terms well-defined and no pseudo-PD ‘1’ involved.

Therefore, the 3 sequences 00π∞(b1/x, b2 · x, b3/x, . . . ) = 0π∞(b1, b2, b3, . . . ) = π∞(b1 ·
x, b2/x, b3·x, . . . ) are one and the same, in other words supp(

←
s ) ⊂ [r−1]n ⇔ supp(K(s)) ⊂

[r]n ⇔ supp(
→
s ) ⊂ [r + 1]n.

In parts I, II, III, we have seen that supp(s) ⊂ [a]n ⇔ supp(K(s)) ⊂ [a]n for a ∈
{−1, 0,+1}. By the previous equality, we can now extend this to a = 2 and a = −2, and
by induction to all 0 ≤ a, r ≤ n− 1.

V. Isometry & Induction (from K(s) to Ku(s))

We now show for arbitrary n ∈ N, 0 ≤ r < n and any u ∈ Z that Ku maintains the
invariant, supp(Ku(s)) ⊂ [r]n. We have seen that this is true for u = 1. By induction,
this is also valid for u ∈ N (forward application of K).

K is an isometry. Therefore, restrictingK to the first k coordinates, we haveK2!k(s)1...k
= (s1, . . . , sk) and thusK2k−1(s)1...k = K−1(s)1...k, sinceK is invertible as isometry. Hence,
the (positive) case u = 2k − 1 already has shown supp(K−1) ⊂ [r]n for the first k coordi-
nates. Letting k → ∞ shows the claim for u = −1. Applying induction to the (negative)
exponent shows it for all u ∈ Z.

As a consequence of Main Theorem 6 and Lemma 5, we obtain the following corollary:

Corollary 7. (i) Let supp(s) ⊂ [0]n for some n ∈ N. Then all PDs of all Ku(s) have
degrees and indices of nonzero coefficients a multiple of n.

(ii) Let supp(s) ⊂ [r]n for some n ∈ N and 1 ≤ r ≤ n − 1. Then all Ku(s) have
alternately degrees d ≡ r (mod n), for b1, b3, b5, . . . , and degrees d ≡ n − r (mod n), for
b2, b4, b6, . . . . The same applies for the indices of nonzero coefficients.

In particular, for n = 2, we obtain:
(iii) Let s ∈ Aω be such that s2i−1 = 0, i ∈ N,i.e. supp(s) ⊂ [0]2. Then all odd coefficients
of Ku(s), u ∈ Z are zero as well and thus the PDs are all of even degree.
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(iv) Similarly, for supp(s) ⊂ [1]2, only coefficients with odd indices may be non-zero
and thus all Ku(s), u ∈ Z have only PDs with odd degree.

Proof. The corollary follows immediately from Lemma 5 and Main Theorem 6.

Conjecture 8. Theorem 6 is valid for sequences over any finite field Fq.

Proof. Idea: Parts I, IV, and V of the proof carry over without change to any Fq. For
parts II and III, we must replace Lemma 4 by the more involved cases treated in [12].

4 A Further Sequence Pattern Property Maintained by K

Theorem 9. Let s = (s1, s2, . . . ) ∈ Aω be a binary sequence with s2n−1 = s2n, ∀n ∈ N.
Then for any u ∈ Z, t = (t1, t2, . . . ) := Ku(s) also satisfies t2n−1 = t2n, ∀n ∈ N.

Proof. Firstly, we have G(s, x) = (x + 1) · G(ŝ, x2) with ŝn := s2n, since two consecutive
1s can be extracted into the factor (x+ 1), leaving a single 1 at an even index.

Now, K(ŝ) is just some binary sequence, which we call t̂. By blow-up with a factor
of 2, G(ŝ, x2) has a CFE [b̂1, b̂2, . . . ] such that π(b̂1)π(b̂2). . . = 0t̂10t̂20t̂30t̂4 . . . , where the
b̂i are polynomials in x2, e.g. π(x2) = 0100, π(x2 + 1) = 0101.

From G(s, x) = (x+1) ·G(ŝ, x2), the desired CFE K(s) then corresponds to the CFE
of G(s, x) = [b̂1/(x+ 1), b̂2 · (x+ 1), b̂3/(x+ 1), b̂4 · (x+ 1), . . . ] — if well-defined.

The PDs with odd index therefore have to be multiples of (x+1), which is equivalent
to having an even number of coefficients 1. Again, we apply the Equivalence Lemma.

This time, we include or exclude a constant term a0 = 1 in such a way that b̂′2i−1 has
an even number of nonzero (i.e. 1) coefficients. As before, we introduce a pseudo-PD 1
(=: b̂′2i) after b̂

′
2i−1 in this case, toggle the constant coefficient of the next PD, and so on.

We now have PDs with odd index, having an even number of (still isolated) 1s, and
PDs with even index, having any number of (isolated) 1s, or being the pseudo-PD 1.

We multiply the PDs with even index by x+1, giving a pattern ‘11’ for every (isolated)
1 present previously, and a pseudo-PD 1 is changed to x+ 1 with π(x+ 1) = 11.

The PDs with odd index have to be divided by (x + 1). Such a PD now has an even
number of 1s. Hence we can split the coefficient sequence 0l110k110l210k210l310k31 . . . into
parts 0li10ki1, corresponding to polynomials xki+1 + 1 = (x+ 1) ·∑ki

j=0 x
j.

Since all zero runs have odd length (the 1s appear at even positions from [0]2), this
polynomial consists of an even number of consecutive coefficients 1, or (ki+1)/2 patterns
‘11’. The whole π(b̂′2i−1/(x + 1)) thus consists of a mix of patterns ‘00’ and ‘11’. The

same is (trivially) true for π(b̂′2i · (x+ 1)), and we obtain t2n−1 = t2n, ∀n ∈ N.
The general case u ∈ Z follows as in the proof of Main Theorem 6 by induction and

K being an isometry.

5 The K̂ Isometry and its Tree Complexity

In this section, we apply Theorems 6 and 9, showing why the tree complexity of the
isometry induced by linear complexity is so small, compared to those of 2-adic and rational
complexity, following the isometric approach as expounded at SETA 2004, [14].
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Tree complexity of Isometries

The three complexity measures K (linear), A (2-adic) [5] [6], and R (rational) [16] [17]
[18] can be compared via their induced isometries Y ∈ {K,A,R}, determining their tree
complexity ([10][14]).

Let an infinite regular binary tree with labels be indexed by v ∈ A∗. Starting with
v = ε at the root, each node v has its left and right child nodes indexed by v0 and v1,
respectively. The label at node v, Ŷ(v) := Y(v0ω)|v|+1 ∈ A is the result of the mapping

v0 . . .
Y7−→ wŶ (v) . . . . The tree complexity of the labeling (lower bounds from first 36

levels) is given in Table 2.

Ŷ h = 1 2 3 4 5 6

K̂ 2 8 48 480 2816 21760

Â 2 8 128 10506 1931K 91M

R̂ 2 8 118 12244 2195K 45M

Table 2: Tree complexities of induced isometries, KB(Ŷ , h) for h = 1, . . . , 6.

Apparently, K is by far the least complex (in terms of tree complexity) of the three
isometries. A and R are of comparable complexity, also suggested by the fact A(vω) =

R(
←
v
ω
), ∀v ∈ A+ (see [18, Thm. 13]).

The Results of Massey/Wang and Carter

We now show that Theorems 6 and 9 together with results by Massey and Wang [19] and
by Carter [3] fix a large part of the initial part of the isometry K.

Theorem 10. (Massey and Wang [19])

A sequence s ∈ Aω has perfect linear complexity profile, i.e. all PDs are of degree 1, if
and only if s1 = 1, and s2i+1 = si + s2i for i ∈ N. The s2i can be chosen arbitrarily.

Proof. See [19].

Theorem 11. (Carter [3])

(i) A sequence s ∈ Aω with s1 = 0, and s2i+1 = si + s2i for i ∈ N (where the s2i can be
chosen arbitrarily) has only PDs of even degree, or of degree 1. No two consecutive PDs
have degree 1.

(ii) A sequence s ∈ Aω with s2 = 1, and s2i+2 = si+1+ s2i+1 for i ∈ N (where the s2i−1
can be chosen arbitrarily) has only PDs of odd degree, or of degree 2.

(iii) A sequence s ∈ Aω with s2 = 0, and s2i+2 = si+1 + s2i+1 for i ∈ N (where the
s2i−1 can be chosen arbitrarily) has only PDs of odd degree.

Proof. See [3], Theorems 4.3.3, 4.3.4 for (i), 4.4.3 for (ii) and 4.4.2 for (iii).

Sequences and Their Applications (SETA) 2024 9
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0,1 : fixed value ! : value fixed, depending on some previous entries
* : arbitrary value = : value repeats the entry immediately before

Source Pattern in s Permitted PD degrees in K(s)
MW [19] 1*!*!*!*!* 1
C1 [3] 0*!*!*!*!* 1; 2,4,6,. . . , not 1|1
C2 [3] *1*!*!*!*! 2; 1,3,5,. . .
C3 [3] *0*!*!*!*! 1,3,5,. . .
[0]2 0*0*0*0*0* 2,4,6,. . .
[1]2 *0*0*0*0*0 1,3,5,. . .
Thm. 9 *=*=*=*=*= 1,3,5,. . .
[0]3 00*00*00*0 3,6,9,. . .
[1]3 0*00*00*00 ((2, 5, 8, . . . )(1, 4, 7, . . . ))ω

[2]3 *00*00*00* ((1, 4, 7, . . . )(2, 5, 8, . . . ))ω

[0]7 000000*000 7,14,21,. . .
[1]7 *000000*00 ((1, 8, 15, . . . )(6, 13, 20, . . . ))ω

[5]7 0000*00000 ((5, 12, 19, . . . )(2, 9, 16, . . . ))ω

Figure 1: Patterns in s and PD degrees in its Continued Fraction.

Regularity of the isometry induced by K

Summarizing the results of Massey and Wang, Carter, the [r]n cases of Theorem 6 and
Theorem 9, we have the invariant patterns for the support given in Figure 1.

We therefore have the restrictions shown in Figure 2 (a? unknown bit, but same

a! at child nodes) for the tree complexity of K̂, from the following patterns, where the

underlined value is mandatory and va
K−→ wb gives K̂(v) = a+ b. Theorems 6 and 9 fix

38 out of the first 63 entries of the K̂ tree, and also including the results by Wang and
Massey and by Carter as well as LFSR theory, we account for 47 out of these 63 entries
in the first 6 levels of the K̂ tree:

LFSR theory, LF: vω 7→ ∗2|v|0ω, e.g. 101010 7→ 101000
Thm 6, [r]n: ∀0 ≤ r < n ∈ N, ∀v ∈ A∗ : (supp(v) ⊂ [r]n) ∧ (|v|+ 1 6∈ [r]n) ⇒ K(v) = 0
Thm 9: ∀a, b, c, . . . , ∃α, β, γ, . . . : aabbcc. . . 7→ ααββγγ . . . , e.g. 110011 7→ 111111
Massey-Wang, MW: (1, a, a+ 1, b, b+ a, c, c+ a+ 1, d, d+ b, e, e+ b+ a,. . .)

7→ 1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 ∗ . . ., hence K̂(ε) = 1 + 1 = 0, K̂(1a) = a+ 1 + 1 = a
Carter (i), C1: {(0, a, a+ 0, b, b+ a, c, . . . )} → {00000, 1∗000, . . . }
Carter (iii), C3: {(a, 0, b, b+ 0, c, c+ b, . . . )} → {1∗1∗00, 1∗0000, 000000, . . . }

Proposition 12. Asymptotically, in row N ∈ N, Θ(2N/2) out of the 2N−1 prefixes v ∈
AN−1 have a value K̂(v) that is determined by one of the cases [r]2, Theorem 9, or MW.

Proof. For even |v|, both [0]2 and MW yield 2|v|/2 cases where K(va)|v|+1 is restricted to
0, respectively 1. For odd |v|, both [1]2 and Theorem 9 yield 2(|v|+1)/2 cases by restricting
K(va)|v|+1 to 0, respectively K(va)|v|.
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Address v : ε

K̂(v) : 0
Reason: MW,[0]2, . . .

0
0

[1]2, T9, C3

00
0

[0]2, LF,C1

000
0

[1]2, T9, LF,C3

0000
0

[0]7, LF,C1

0
[1]2
T9

0
[1]2
T9

0001
0

[0]4

0
[4]7

?
−

001
0

[1]2,T9

0010
0

[0]3

0
[1]2

0
[1]2

0011
a?
−

a!
T9

a!
T9

01
0

[0]2

010
0

[1]3

0100
0

[2]7

0
[2]7

0
[1]3

0101
0

[0]2, LF

1
LF

?
−

011
?
−

0110
?
−

0111
?
−

1
0

[1]3,T9

10
0

[0]3,MW,C1

100
0

[1]2

1000
0

[1]7, C1

0
[1]2
C3

0
[1]2

1001
0

[2]3

0
[1]3

?
−

101
0

[1]2

1010
1

MW,LF

0
[1]2

0
[1]2
LF

1011
0

MW

1
C3

?
−

11
1

MW,LF,C1

110
1
T9

1100
0

MW

0
T9
C3

0
T9

1101
0

MW

?
−

0
C3

111
1

LF, T9

1110
?
−

1111
1

LF,C1

1
T9

1
T9
LF

Figure 2: Address v ∈ A∗, K̂(v), and reason for K̂(v).

Conjecture 13. Including all [r]n of Theorem 6 (prime n is sufficient), Carter (i, ii, iii)
and LFSR theory does not change the asymptotic result of Proposition 12.

Conclusion

We have shown that for all binary sequences s ∈ Aω, the properties supp(s) ⊂ [r]n for any
residue class, and s2k−1 = s2k, ∀k ∈ N are preserved under forward and backward applica-
tion of the continued fraction operator K (the modified Berlekamp-Massey Algorithm).

We applied the result to the K̂ tree associated with the isometry K.
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Abstract

In this work, we define a family of 9 statistical randomness tests for collections
of short binary strings, by making use of random walk statistics. For a binary
sequence of length n we consider the probability of intersecting the line y = t
exactly at k distinct points. In the literature there are some explicit formulas
for these probability values but the ones for short sequences are not feasible for
computations concerning sequences of length 256 or more. On the other hand,
approximation techniques, or asymptotic approaches that should be used only when
testing long sequences, are not useful for testing sequences of length between 256
and 4096. Recursive formulas, derived in this paper, made it possible to obtain
exact values of the corresponding probability distribution functions. Employing
these formulas, we have provided necessary figures for testing collections of strings
of length 27, 28, 210 and 212 bits. Finally we have applied these 9 tests to several
collections of strings obtained from different pseudorandom number generators and
to biased sequences in order to see if the tests introduced can detect non-random
data.

Keywords: Cryptography, Random Walk, Statistical Randomness Testing, NIST Test
Suite

1 Introduction

The quality of a binary sequence, produced by a pseudorandom number generator to be
used as a seed for cryptosystems, has a vital importance. It should be random looking,
that is, should not follow any pattern that may give rise to an attack to the system.
Moreover, outputs of encryption algorithms must also be indistinguishable from a true
random sequence. Thus, in evaluation of a binary sequence, a pseudorandom number
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generator or an encryption algorithm in terms of randomness of its output, one needs
a statistical randomness test or even a package of tests that evaluates the randomness
property. Since any periodic sequence may appear as an output of a true random source,
there is no mathematical method to decide whether the sequence under consideration is
in fact an output of a true random generator or not, for sure. On the other hand, one can
give decision depending on the observed statistical values of the sequence, comparing it
with the expected values and distributions. There are many statistical randomness tests
and test suites in the literature ([1], [2], [3]). Moreover there are many studies about
the independence of the statistical randomness tests ([4], [5]). Different point of views
yields different statistical tests. One of these point of views is random walk statistics.
In the literature there are various randomness tests concerning random walk statistics,
however these tests can either be applied to a very long sequence (a sequence of length
at least 106), such as the tests included in the NIST Test Suite [6], or to a collection of
very short sequences (sequences of length at most 256), as stated in [7]. Random walk
tests are included in the NIST Test Suite in the name of Random Excursion and Random
Excursion Variant Tests [6]. These tests use approximations in the computations of the
cumulative probability distribution of the corresponding random variables and therefore
can be applied only to sequences of length longer than 106. In this work, we revisit the
distribution function of the test and give the exact probability values for sequences of size
less then 4096.

The organization of the paper is as follows. In section 2, we give preliminaries. The
recursive relation satisfied by the number of sequences of length n, having exactly k
balanced points is derived first for balanced sequences in section 3, and then for general
sequence in section 4, to be used for the random excursion statistics. In section 5, using
the results obtained in sections 3 and 4, we derive recursive relations for the number of
strings intersecting the line y = t, exactly k times. In section 6, we define new randomness
tests based on these statistics. In section 7, we apply the proposed tests to random and
non-random data. Finally in section 8, we conclude the paper. We omitted the proofs of
Lemma 4, Theorem 11, Proposition 12 and Theorem 13 due to the page limitations.

2 Preliminaries

First, we will introduce the notations used in this article. σ denotes a binary string
s1, s2, · · · , sn of length n. A string σ is called balanced if the number of its terms, that is
si’s, equal to 0 is the same as the number of its terms equal to 1; we call a term sk (k ≤ n)
a balance point if the substring s1, . . . , sk is balanced. Obviously a string is balanced if
and only if the last term sn is a balance point.

To give a motivation for the following definitions, consider a binary string σ =
s1, · · · , sn of length n, and its graph. The graph of a sequence σ, regarded as a continuous
function, is drawn by joining the gaps between dots (i, si) with line segments. These line
segments start from the origin, and the part of it between (i−1, si−1) and (i, si) has slope
equal to ai = (−1)si = 1− 2si. The graph of the sequence σ = 0, 1, 1, 0, 0, 1, 0, 0 is given
below to illustrate this method of drawing graph of a discrete binary sequence, regarding
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Figure 1: Graph of the sequence σ = 0, 1, 1, 0, 0, 1, 0, 0

it as a continuous function.

Definition 1. A string σ is said to intersect (meet or touch) the line y = t at x = i if
2(s1 + · · ·+ si) = i− t, that is the difference between the ones and zeroes in the ordered
set {s1, s2, . . . , si} is t.

Note that si is a balance point of the binary sequence σ if and only if the graph of σ
intersects the line y = 0 at x = i.

Definition 2. Here we list some definitions and notations that will be used throughout
the paper.

• Xt(n,k) denotes the set of all strings of length n which intersect the line y = t
exactly at k distinct terms and denote the number of elements of this set, that is
|Xt(n, k)|, by xt(n, k). As a special case, for k = 0, we write Xt(n) = Xt(n, 0) and
similarly, xt(n) = |Xt(n, 0)|. Since Xt(n) is the set of strings of length n which do
not intersect the line y = t, the complement X t(n) of this set consists of strings
which intersect the line y = t at least in one point. We write xt(n) = |X t(n)|.

• B(n,k) ⊂ X0(n, k) denotes the set of balanced strings of length n which contain
exactly k balance points and b(n, k) is the number of such strings.

• Bt(n) stands for the set of strings of length n which touch the line y = t for the
first time at the last term and bt(n) = |Bt(n)|. Note that B0(n) = B(n, 1) and if

t ̸= 0, then no string in Bt(n) is balanced. In fact, if σ ∈ Bt(n), then
n+ t

2
of the

terms of σ are equal to zero.

• X(n,k) denotes the set of strings which contain exactly k balance points and x(n, k)
is the number of such strings.

• The probability of a string of length n to have exactly k intersections with the line
y = t (or y = −t) will be denoted by pt(n,k) = prob(σ ∈ Xt(n, k)) = xt(n, k)/2

n.
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• Let n and k be positive integers and let a(i, j) be a two dimensional array, i =
1, . . . , n and j = 1, . . . , k. By [a(n,k)] we denote the table (matrix) whose rows
are indexed by i = 1, . . . , n and columns are indexed by j = 1, . . . , k. In certain
circumstances row and/or column indices are allowed to start with 0 rather than 1.

From the definition it follows that x0(n, k) = x(n, k) and xt(n, k) = x−t(n, k) for any
t = 1, . . . , n.

One of the basic tools we are going to employ is the sequence {Cn}∞n=0of Catalan

numbers defined by Cn =
1

n+ 1

(
2n

n

)
for any non negative integer n. The first few terms

of this sequence are 1, 1, 2, 5, 14,. . ..
Now we will summarize some well known identities about Catalan numbers. It is

straightforward to see that the Catalan numbers satisfy the following recursion:

Cn =
4n− 2

(n+ 1)
Cn−1 ∀n > 1. (1)

Another important property of the Catalan numbers is that, convolution of the sequence
{Cn}∞n=0 with itself is again itself, that is, for any non negative integer n, Cn+1 =∑n

i=0CiCn−i. Moreover, using this convolution property, it is east to show that the gen-
erating function of this sequence,

C(z) =
∞∑

i=0

Ciz
i = 1 + z + 2z2 + 5z3 + 14z4 + · · ·

satisfies the equation
zC2(z) = C(z)− 1 (2)

and from which it follows that C(z) = 1−√1−4z
2z

.

By differentiating both sides of the equation (2) one obtains

d

dz
C(z) =

C2(z)

1− 2zC(z)
=

C(z)− 1

z(1− 2zC(z))
(3)

and by differentiating the product

zC(z) =
∞∑

i=0

1

i+ 1

(
2i

i

)
zi+1

we obtain the generating function of the sequence
{(

2n
n

)}∞
n=0

as:

C(z) + z
d

dz
C(z) =

∞∑

i=0

(
2i

i

)
zi. (4)

The following lemma presents a result which will be the basis of many computations
throughout the work.
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Lemma 3. Let n, t and q be positive integers with t ≤ q ≤ n. The number of strings of
length n which contain q zeros and which intersect the line y = t at least once is given by





(
n

q − t

)
if q <

n+ t

2
,

(
n

q

)
if n+t

2
≤ q ≤ n.

Proof. Given a string σ of length n which intersects the line y = t, depending on q we
consider two cases:

1.
n+ t

2
< q ≤ n. In this case σ necessarily intersects the line y = t and number of

such strings is

(
n

q

)
.

2. t ≤ q ≤ n+ t

2
. Let A be the set of strings of length n which have q zeros and which

intersect the line y = t, and let B be the set of strings of length n which have q − t
zeros. We will show that these two sets have the same number of elements, so that

the number of strings in A is

(
n

q − t

)
.

Given σ ∈ A. Let i0 be the smallest integer such that σ intersects the line y = t
at si0 . The string σ = s1 · · · si0si0+1 · · · sn where si = 1 − si, i = 1, . . . , i0 has q − t
zeros, hence σ ∈ B. Thus, to each σ ∈ A, there corresponds a unique string σ ∈ B.
Conversely, any string τ in B has q − t zeros, hence n − q + t ones. On the other
hand, the condition q ≤ (n + t)/2 implies that n− q + t ≥ (n + t)/2, which means
that the string τ intersects the line y = −t. Now in the string τ, starting with the
first term replace each one with a zero and each zero with a one up to the term at
which the string intersects the line y = −t for the first time. The resulting string
intersects the line y = t and has q zeros, hence is in A. Then the correspondence
given above is one to one and the sets A and B have the same number of elements.

Lemma 4. Let n and t be positive integers with t ≤ n. The number of strings of length
n which intersect the line y = t at least once is given by

xt(n) =





2

n−t
2∑

i=0

(
n

i

)
−
(
n
n−t
2

)
if n+ t is even,

2

n−t−1
2∑

i=0

(
n

i

)
if n+ t is odd.

(5)
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3 Recursive Relations Satisfied by b(n, k)

We first give an explicit expression for b(n, 1), the number of balanced sequences which
have no balance points other than the last term. It is obvious that a balanced sequence
must be of even length, therefore b(n, 1) = 0 for any odd integer n. For sequences of even
length we have the following proposition.

Proposition 5. For any positive integer m, b(2m, 1) = 2Cm−1 where Cm−1 denotes the
corresponding Catalan number.

Proof. Any σ = s1 · · · s2m ∈ B(2m, 1) is balanced and has only one balance point (neces-
sarily the last term) and none of the terms s1, . . . , s2m−1 is a balance point. For m = 1
the claim is apparent: b(2, 1) = 2 = 2C0. Now assume that m > 1 and s1 = 1 (hence,
s2m = 0). It easy to see that the string s2, . . . , s2m−1 is balanced and it cannot intersect
the line y = 1. Thus, to each such string, there corresponds a unique string σ ∈ B(2m, 1)
with s1 = 1. Since the converse relation holds also, the number of strings in B(2m, 1) is
equal to the number of strings of length 2m − 2 which have q = m − 1 zeros and which
do not intersect the line y = 1. Then, from Lemma 3 we obtain

b(2m, 1) =

(
2m− 2

m− 1

)
−
(
2m− 2

m− 2

)

which simplifies into Cm−1. By including the strings with initial term 0, the assertion
follows.

As a result, for any nonnegative integer we have

b(n, 1) =

{
0 if n = 0 or n is odd,
2Cn

2
−1 if n > 0 is even.

(6)

Proposition 6. For any positive integers m and k >1, the sequence {b(2m, k)}∞n=0 is the
convolution of the sequences {b(n, 1)}∞n=0 and {b(n, k − 1)}∞n=0, that is

b(2m, k) =
m−1∑

i=0

b(2i, 1)b(2m− 2i, k − 1).

Proof. Let k > 1 and consider a string σ ∈ B(n, k). Assume that the first balance point
is s2i. Then, σ can be separated into two substrings σ1 = s1 · · · s2i and σ2 = s2i+1 · · · s2m
such that σ1 ∈ B(2i, 1) and σ2 ∈ B(2m− 2i, k − 1).

Now, we focus on the generating function of the sequence {b(n, k)}∞n=0. First we find
the generating function B(z) of {b(n, 1)}∞n=0 :

B(z) =
∞∑

i=0

b(i, 1)zi =
∞∑

i=1

b(2i, 1)z2i = 2
∞∑

i=1

Ci−1z
2i = 2z2

∞∑

i=0

Ciz
2i = 2z2C(z2)

= 1−
√
1− 4z2.
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Proposition 7. Let k be a positive integer. Then generating function of the sequence
{b(n, k)}∞n=0 is Bk(z) = 2kz2kCk(z2).

Proof. Proposition 6 implies that the generating function of {b(n, k)}∞n=0 is the product of
B(z) and the generating function of {b(n, k− 1)}∞n=0. Then,the proof follows inductively:
generating function of {b(n, k)}∞n=0 for k = 2 is B(z)B(z) = B2(z). For k = 3 we have
B(z)B2(z) = B3(z) and so on.

For the sake of completeness we let B0(z) be the identity function.

Theorem 8. For any positive integers n and k, the quantities b(n, k) satisfy the following
recursions subject to the given initial conditions.

1. For k = 1

b(n, 1) =





0 if n = 1,
2 if n = 2,
4(n− 3)

n
b(n− 2, 1) if n ≥ 3.

2. For k = 2

b(n, 2) =

{
0 if n ≤ 2,
2b(n, 1) if n ≥ 3.

3. For k ≥ 3

b(n, k) =

{
0 if n < 2k,
2b(n, k − 1)− 4b(n− 2, k − 2) if n ≥ 2k.

Proof. 1. Initial terms are obvious and the recursion follows from (1) and (4).

2. Initial terms are obvious. Generating function of {b(n, 2)}n satisfies

B2(z) = 4x4C2(z2) = 4z2
(
z2C2(z2)

)
= 4z2

(
C(z2)− 1

)
= 4z2C(z2)− 4z2

= 2B(z)− 4z2

which means that b(2, 2) = 2b(2, 1)− 4 = 0 and for n > 2, b(n, 2) = 2b(n, 1).

3. Initial terms are obvious. For any integer k > 2 we have

Bk(z) = 2kz2kCk(z2) = 2kz2k−2[Ck−2(z2)][z2C2(z2)] = 2kz2k−2[Ck−2(z2)][C(z2)− 1]

= 2
(
2k−1z2k−2Ck−1(z2)

)
− 4z2

(
2k−2z2k−4Ck−2(z2)

)

= 2Bk−1(z)− 4z2Bk−2(z)

which implies that b(n, k) = 2b(n, k − 1)− 4b(n− 2, k − 2) for any integer n > 2.
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4 Recursive Relations Satisfied by x(n, k)

Given a positive integer n, by substituting t = 1 in Equation (5) we observe that

x1(n) =





2n −
(
n

n−1
2

)
if n is odd

2n −
(
n
n
2

)
if n is even

which can be written simply as x1(n) = 2n −
(

n
⌊n
2
⌋
)
. On the other hand, by definition,

x1(n) = 2n−xt(n) which gives the number of strings which do not intersect the line y = 1
as

x1(n, 0) = x1(n) =

(
n

⌊n
2
⌋

)
. (7)

Now, let σ ∈ X0(n) and assume that s1 = 1, then s2 . . . sn ∈ X1(n − 1, 0). It follows
that the number of strings in X0(n) with the first term 0 is x1(n− 1, 0) =

(
n−1
⌊n−1

2
⌋
)
. Since

the same holds for the strings with the first term 1, we obtain the number of strings which
do not intersect the line y = 0 as

x0(n, 0) = x0(n) = 2

(
n− 1

⌊n−1
2
⌋

)
. (8)

Let Xk(z) be the generating function of the sequence {x(n, k)}∞n=0 and for the special
case k = 0 write X(z) = X0(z). We have X(z) =

∑∞
i=0 x(i, 0)z

i, where we let x(0, 0) = 1.
We can write this function as X(z) =

∑∞
i=0 x(2i, 0)z

2i + x(2i+ 1, 0)z2i+1. From (5) we
obtain x(2i, 0) = 2

(
2i−1
i

)
=
(
2i
i

)
and x(2i+ 1, 0) = 2

(
2i
i

)
, thus

X(z) =
∞∑

i=0

((
2i

i

)
+ 2

(
2i

i

)
z

)
z2n = (1 + 2z)

∞∑

i=0

(
2i

i

)
z2i.

Now, from (3) we write
∑∞

i=1

(
2i
i

)
z2i = C(z2) + z2C

′
(z2) which leads to

X(z) = (1 + 2z)(C(z2) + z2C
′
(z2)). (9)

Using the substitutions z2C ′(2) = C(z2)−1
1−2z2C(z2)

and z2C2(z2) = C(z2)− 1 in (8):

X(z) = (1 + 2z)

(
C(z2) +

C(z2)− 1

1− 2z2C(z2)

)
= (1 + 2z)

(
2C(z2)− 2z2C2(z2)− 1

1− 2z2C(z2)

)

=
1 + 2z

1− 2z2C(z2)
=

1 + 2z

1−B(z)
=

1 + 2z√
1− 4z2

=

√(
1 + 2z

1− 2z

)

Proposition 9. For any positive integer n, x(n, 0) = 2

(
n− 1

⌊n−1
2
⌋

)
, and for any integer

k >1, x(n, k) =

⌊n/2⌋∑

i=1

b(2i, k − 1)x(n− 2i, 0).
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Proof. Let k > 1 and consider a string σ ∈ X(n, k). Assume that the last balance point
is s2i. Then, σ can be separated into two substrings σ1 = s1 · · · s2i and σ2 = s2i+1 · · · sn
such that σ1 ∈ B(2i, k) and σ2 ∈ B(n− 2i, k − 1).

Proposition 10. For any positive integer k, generating function of the sequence {x(n, k)}∞n=0

is Xk(z) = X(z)Bk(z).

Proof. Previous proposition implies that Xk(z) = Xk−1(z)B(z). Then, for X1(z) =
X(z)B(z) and the assertion follows inductively.

With the notation of the above proposition, if we substitute k = 0, we see that
X0(z) = X(z)B0(z) = X(z).

Theorem 11. For any nonnegative integers n and k, the quantities x(n, k) satisfy the
following recursions subject to the given initial conditions:

k = 0 =⇒ x(n, 0) =





1 if n = 0
2 if n = 1

2(1− 1

n
)x(n− 1, 0) if n ≥ 2 is even

2x(n− 1, 0) if n ≥ 3 is odd

k = 1 =⇒ x(n, 1) =

{
0 if n ≤ 1
x(n, 0) if n ≥ 2

k ≥ 2 =⇒ x(n, k) =

{
0 if n < 2k
2x(n, k − 1)− 4x(n− 2, k − 2) if n ≥ 2k

5 Recursive Relations Satisfied by xt(n, k)

We have defined Xt(n, k) to be the set of strings which intersect the line y = t at exactly
k terms. For t = 0 we have already obtained recursive relations by which [x0(n, k)] can
be computed effectively. So, we focus on the case t ̸= 0 and since x−t(n, k) = xt(n, k),
without loss of generality we can assume that t is positive.

Proposition 12. Given integers n, k ≥ 0 and t > 0. If n < t+2k− 2, then xt(n, k) = 0.
If n ≥ t+ 2k − 2, then x1(n, k) =

1
2
x(n+ 1, k),

x2(n, k) =

{
x1(n+ 1, 0) if k = 0
x1(n+ 1, k)− x(n, k − 1) if k ≥ 1

xt(n, k) = xt−1(n+ 1, k)− xt−2(n, k) (t ≥ 3)
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Theorem 13. Let n ≥ 0, k ≥ 0 and t ≥ 1 be integers. The numbers xt(n, k) satisfy the
following recursions:

xt(n, k) =





x1(n, k) =
1

2
x(n+ 1, k) if t = 1

1

2
(xt−1(n+ 1, 0) + xt−1(n+ 1, 1)) if t ≥ 2 and k = 0

xt(n, k) =
1

2
xt−1(n+ 1, k + 1) if t ≥ 2 and k ≥ 1

Theorem 14. Let n, k, and t be nonnegative integers. The table [pt(n, k)] can be con-
structed by the following recursions

i. t = 0 and k = 0 =⇒ p0(n, 0) =





1 if n = 0,
1 if n = 1,
(1− 1

n
)x0(n− 1, 0) if n ≥ 2 is even,

p0(n− 1, 0) if n ≥ 3 is odd.

ii. t = 0 and k = 1 =⇒ p0(n, 1) =

{
0 if n ≤ 1,
p0x(n, 0) if n ≥ 2.

iii. t = 0 and k ≥ 2 =⇒ p0(n, 1) =

{
0 if n < 2k,
2p0(n, k − 1)− p0(n− 2, k − 2) if n ≥ 2k.

iv. t = 1 =⇒ p1(n, k) = p0(n+ 1, k).

v. t ≥ 2 and k = 1 =⇒ pt(n, 0) = pt−1(n+ 1, 0) + pt−1(n, 1).

vi. t ≥ 2 and k ≥ 2 =⇒ pt(n, k) = pt−1(n+ 1, k + 1).

Proof. Just substitute pt(n, k) = 2−nxt(n, k) in Theorem 11 and Theorem 13.

6 RW-9 Random Walk Tests

We propose a family of randomness tests based on random walk statistics, namely RW-9
random walk tests. RW-9 random walk tests first convert a binary string to a random
walk and then count the number of times that a random walk intersect the line y = t.
The input of the test is a collection of binary strings with equal length n. We apply
the test function to determine the number of intersections with the line y = t in each
string, and call them as observed values. Afterwards, we apply χ2 test and produce p-
value using the bin probability tables (as described in [8]). We give the probabilities for
n ∈ {128, 256, 1024, 4096}. It should be noted that the 9 test statistics defined in this
paper are not necessarily independent.
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6.1 Walkthrough

Tables 2, 3, 4, and 5 present the number of bins, bin values and the probabilities corre-
sponding to each bins, for n = 128, 256, 1024 and 4096 respectively. As an example, to
test the randomness of a collection of N binary strings of length n = 128, the first row
of Table 2, that is the line labeled as “y = 0” suggests the use of 8 bins, and gives the
expected values of the number of excursions to be 0 or 1 as 0.140772×N , to be 2 or 3 as
0.138555×N , ..., to be between 17 and 128 as 0.107782×N .

The procedure to test a collection of N binary strings of length n, using the Random
Walk Tests family can be summarized as follows:

1. Determine the corresponding number of bins for each of the test functions, that is,
the number of intersections of the random walk with the line y ∈ {0,±1,±2,±3,±4}.

2. Apply χ2 Goodness of Fit Test, that is evaluate

χ2 =
B∑

i=1

(Oi −N · pi)2
N · pi

and p-value = igamc

(
B − 1

2
,
χ2

2

)

where pi’s are obtained from bin probability tables 2, 3, 4, and 5.

3. If p-value< ϵ, conclude that the null hypothesis H0 (the randomness hypothesis) is
rejected, otherwise accepted. In cryptographic applications, ϵ is usually set to 0.01.

7 Application

This section reveals the results obtained from the application of the RandomWalk Tests to
various collections of strings in order to show the sensitivity of the tests. For this purpose,
we generate pseudorandom and non-random data sets. The details are as follows.

First, we apply the tests on the outputs of AES-128, SHA-2 Family and MD5 which are
considered as random looking. For generating AES-128 outputs, 128-bit representations
of the numbers from 0 to 100,000 are encrypted with all-zero key. Note that the data is
encrypted using ECB mode and padding is discarded. The resulting sequence is used for
128-bit testing. Moreover, additional sets of 128, 256 and 512-bit sequences are generated
using the iteration Si = H(Si−1) where S0 = H(0) and H is the hash function MD5,
SHA-2 256 and SHA-2 512 respectively. In this case, the length of 0 is the message block
size of the hash function H. Then, the binary representations of the decimal parts of π
and
√
2 are tested. For each number, we take as many bits so that 100,000 1024-bit and

4096-bit sequences are generated respectively.
The above mentioned strings measure the behavior of the test on random data. We

also generate a 1% weight biased sequence in order to see if the tests can detect non-
random data. For this purpose, using the random number generator of Microsoft .Net
Framework, we generate 100,000 128 bit sequences where each bit is 1 with probability
50,5% and 0 with probability 49,5%. The results are given in Table 1. According to the
results the first five generators pass all the tests (since all the p values are greater than
0.01) while the biased sequence fails all the tests.
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M. Uğuz, F. Sulak, A. Doğanaksoy, O. Koçak

Table 1: Application of randomness tests to different pseudorandom number generators and
biased sequences for N = 100, 000

a
√
2(4096-Bit) π(1024-Bit) SHA-2(256-Bit) MD5(128-Bit) AES(128-Bit) 1% Biased(128-Bit)

y = 0 0.651536 0.765225 0.723788 0.595462 0.794321 0.000121
y = 1 0.261310 0.257546 0.111009 0.785019 0.627966 1.01E-92
y = −1 0.862806 0.795376 0.014390 0.495422 0.664016 1.56E-37
y = 2 0.176344 0.452462 0.936082 0.728649 0.947433 7.30E-262
y = −2 0.631532 0.062998 0.717032 0.864984 0.545166 5.62E-181
y = 3 0.708952 0.226330 0.277121 0.788715 0.570326 0
y = −3 0.431498 0.127274 0.027632 0.670893 0.519191 4.25E-253
y = 4 0.581227 0.780811 0.116235 0.317354 0.452234 0
y = −4 0.689942 0.020685 0.097331 0.720714 0.654505 0

8 Conclusion

In this work, we define a family of randomness tests based on random walk statistics. We
give recursive formulas that are feasible to compute to obtain the exact probabilities for
the number of excursions in a string, namely, the number of strings which intersect the
line y = t exactly k times. Moreover, using the exact distributions for all random walk
statistics obtained, we introduce a new statistical randomness test suite, RW-9, consisting
of 9 tests. Afterwards, we apply the family of these randomness tests to various collections
of strings, consisting of accepted as random looking ones and biased ones. The results
suggest that the tests defined are all sensitive to both random and non-random data. The
sequences generated by

√
2, π, SHA-2 512, SHA-2 256, MD-5 and AES-128 produced

p-values greater than 0.01 for all tests, while, biased sequence failed in all 9 tests. As a
future work, the correlations and the dependencies of the defined randomness tests will
be studied.
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Appendix

Table 2: Bin values and expected probabilities for n = 128.

Bin-1 Bin-2 Bin-3 Bin-4 Bin-5 Bin-6 Bin-7 Bin-8

y=0,1,-1
0-1 2-3 4-5 6-7 8-9 10-12 13-16 17-128

0.140772 0.138555 0.131984 0.121481 0.107849 0.132083 0.119493 0.107782

y=2,-2
0 1-2 3-4 5-6 7-8 9-11 12-15 16-128

0.139689 0.137524 0.131103 0.120833 0.107487 0.132098 0.120326 0.110939

y=3,-3
0 1-2 3-4 5-6 7-8 9-11 12-15 16-128

0.208993 0.134829 0.126409 0.114484 0.099982 0.119954 0.105395 0.089954

y=4,-4
0 1-2 3-4 5-6 7-9 10-13 14-128 -

0.275146 0.130239 0.120194 0.107125 0.132093 0.12112 0.114083 -

y=5,-5
0 1-3 4-6 7-10 11-128 - - -

0.341299 0.18428 0.155113 0.152257 0.167051 - - -

Table 3: Bin values and expected probabilities for n = 256.

Bin-1 Bin-2 Bin-3 Bin-4 Bin-5 Bin-6 Bin-7 Bin-8

y=0,1,-1
0-2 3-4 5-7 8-10 11-13 14-17 18-23 24-256

0.149262 0.097882 0.140597 0.129088 0.114006 0.124929 0.128544 0.115691

y=2,-2
0-1 2-4 5-7 8-10 11-13 14-17 18-22 23-256

0.148685 0.145223 0.136791 0.124096 0.108276 0.116979 0.102695 0.117257

y=3,-3
0 1-3 4-6 7-9 10-12 13-16 17-21 22-256

0.148685 0.145223 0.136791 0.124096 0.108276 0.116979 0.102695 0.117257

y=4,-4
0 1-2 3-5 7-8 9-11 12-15 16-21 22-256

0.196977 0.09583 0.136356 0.123798 0.108137 0.117033 0.118411 0.103459

y=5,-5
0 1-2 3-4 5-7 8-10 11-14 15-20 21-256

0.245269 0.094143 0.08975 0.123798 0.108137 0.117033 0.118411 0.103459
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Table 4: Bin values and expected probabilities for n = 1024.

Bin-1 Bin-2 Bin-3 Bin-4 Bin-5 Bin-6 Bin-7 Bin-8

y=0,1,-1
0-4 5-9 10-14 15-20 21-27 28-35 36-47 48-1024

0.124395 0.121977 0.116671 0.129449 0.132296 0.122905 0.127728 0.124579

y=2,-2
0-3 4-8 9-13 14-19 20-26 27-34 35-46 47-1024

0.124275 0.121863 0.116572 0.12936 0.13224 0.122904 0.127822 0.124965

y=3,-3
0-2 3-7 8-12 13-18 19-25 16-33 34-45 46-1024

0.124275 0.121863 0.116572 0.12936 0.13224 0.122904 0.127822 0.124965

y=4,-4
0-1 2-6 7-11 12-17 18-24 25-32 33-44 45-1024

0.124154 0.121749 0.116474 0.129271 0.132184 0.122903 0.127915 0.12535

y=5,-5
0 1-5 6-10 11-16 17-23 24-31 32-43 44-1024

0.124154 0.121749 0.116474 0.129271 0.132184 0.122903 0.127915 0.12535

Table 5: Bin values and expected probabilities for n = 4096.

Bin-1 Bin-2 Bin-3 Bin-4 Bin-5 Bin-6 Bin-7 Bin-8

y=0,1,-1
0-9 10-19 20-30 31-42 43-55 56-72 73-96 97-4096

0.124297 0.121591 0.127252 0.1274 0.121105 0.128538 0.124726 0.125092

y=2,-2
0-8 9-18 19-29 30-41 42-54 55-71 72-95 96-4096

0.124267 0.121562 0.127226 0.127379 0.121093 0.128538 0.124749 0.125186

y=3,-3
0-7 8-17 18-28 29-40 41-53 54-70 71-94 95-4096

0.124267 0.121562 0.127226 0.127379 0.121093 0.128538 0.124749 0.125186

y=4,-4
0-6 7-16 17-27 28-39 40-52 53-69 70-93 94-4096

0.124237 0.121534 0.127199 0.127357 0.121081 0.128538 0.124773 0.12528

y=5,-5
0-5 6-15 16-26 27-38 39-51 52-68 69-92 93-4096

0.124237 0.121534 0.127199 0.127357 0.121081 0.128538 0.124773 0.12528
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Abstract. Massive machine-type communications (mMTC) is an im-

portant use case of 5G and beyond wireless technology for concretizing

the Internet of Things (IoT). In mMTC, grant-free access is a key en-

abler for connecting wireless devices with low latency and low signaling

overhead. In uplink grant-free access, user-specific, non-orthogonal se-

quences are uniquely assigned to devices for non-orthogonal multiple

access (NOMA), where each active device attempts to access a base sta-

tion (BS) using its own sequence. Then, a BS receiver has to identify

active devices, estimate channel profiles, and detect transmitted data,

through the superimposed sequences from active devices. Exploiting the

sparse activity, the principle of compressed sensing (CS) has been widely

used to perform joint activity detection, channel estimation, and data

detection for uplink grant-free access in mMTC.
In this talk, some applications of pseudorandom sequences for uplink

grant-free access in mMTC are introduced. First of all, Golay comple-

mentary sequences are used for spreading sequences in uplink grant-free

NOMA. From the properties of Golay complementary sequences, the

spreading sequences provide low peak-to-average power ratio (PAPR)

for multicarrier transmission. Also, a theoretical connection to Reed-

Muller codes shows that the spreading sequences guarantee theoretically

bounded low coherence for the spreading matrix. Second, a design frame-

work is presented for non-orthogonal signature sequences, where the de-

sign principle relies on unimodular masking sequences represented by

characters over finite fields. The Weil bounds on character sums are

leveraged to show that the signature sequence matrix has theoretically

bounded low coherence. Simulation results demonstrate that the spread-

ing and the signature sequences achieve excellent performance of joint

activity detection, channel estimation, and data detection for uplink

grant-free access in mMTC. Thanks to the algebraic structure, the non-

orthogonal sequences enjoy the benefits of small phases and small stor-

age space in practical implementations. Finally, potential applications

of pseudorandom sequences for mMTC will be discussed as a future re-

search topic.
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Abstract

Understanding the average zero-correlation zone (ZCZ) width of sequence sets
is of strong interest for enhanced spread-spectrum systems whereby multiple users
are deployed in a randomly distributed manner. For the first time in the literature,
we study the average ZCZ of Golay-Davis-Jedwab (GDJ) complementary pairs.
For a certain set of GDJ pairs, we show that its average ZCZ is dependent on
the associated permutation and identify the permutation yielding the largest ZCZ
width.

1 Introduction

A pair of sequences whose out-of phase aperiodic autocorrelation sums are all zero is known
as the Golay complementary pair [1]. GCPs and their generalization, complementary
codes, have been employed in various fields including radar waveform design, channel
estimation, peak-to-average power ratio reduction, multi-carrier code-division multiple
access (MC-CDMA), etc. It is noted that the number of mutually orthogonal GCPs or
complementary codes is upper bounded by that of the constituent sequences. For a larger
set size, multiple sequence sets with low inter-set correlation property were introduced
in [2]. Almost at the same time, Z-complementary code set (ZCCS) was proposed in [3].
In a ZCCS, every code (which can be regarded as a two-dimensional matrix through
proper arranging) exhibits a zero-correlation zone (ZCZ) for the aperiodic autocorrelation
sums. Likewise, every pair of two distinct codes exhibits a zero cross-correlation zone.
In practice, a ZCCS can be deployed to mitigate the multiuser interference due to quasi-
synchronous transmission of MC-CDMA signals. Since then, a number of constructions
on various types of sequence sets with ZCZ or low-correlation zone (LCZ) properties have
been proposed [4–10].

It is noted that the existing constructions are mostly focused on enlarging the minimum
ZCZ width. Due to the statistical nature of multiuser transmission, we argue that it is
equally important to maximize the average ZCZ width of sequence sets. As the first
initiative on this problem, we aim to investigate the average ZCZ width of a large set of
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GCPs. Based on the GCP construction in [11] by Davis and Jedwab, also known as Golay-
Davis-Jedwab (GDJ) pairs, we characterize the pairwise ZCZ within a set of GDJ pairs.
We show that the ZCZ width of two different GDJ pairs is related to the permutation
and linear terms in the corresponding generalized Boolean functions. Further, we prove
that under the permutation σm (as given in Proposition 15), the largest average ZCZ can
be achieved.

The remainder of this paper is outlined as follows. In Section 2, we introduce the
notations and definitions that will be used throughout this paper. In Section 3, we
investigate the ZCZ width between two GDJ pairs. In Section 4, we demonstrate that
the largest average ZCZ width can be achieved by certain permutation.

2 Preliminaries

Throughout this paper, Zq = {0, 1, . . . , q − 1} is the set of integers modulo a positive

integer q and ξ = e2π
√−1/q denotes a q-th primitive root of unity.

Let a = (a0, a1, . . . , aL−1), b = (b0, b1, . . . , bL−1) be two length-L sequences over Zq.
The aperiodic cross-correlation function between a and b at displacement u is given by

ρ(a,b)(u) =

{∑L−1−u
i=0 ξai−bi+u , 0 ≤ u < L,∑L+u−1
i=0 ξai−u−bi , −L < u < 0.

If a = b, then ρ(a,b)(u) represents the aperiodic autocorrelation of a and is denoted as
ρ(a)(u). Next, we introduce the concept of ZCZ sequences below.

Let S = {s1, s2, . . . , . . . , sK} be a set of K sequences where sk = (sk,0, sk,1, . . . , sk,L−1)
for 1 ≤ k ≤ K. S is called a Z-complementary set with ZCZ width Z if

K∑

k=1

ρ(sk)(u) =

{
KL, u = 0,

0, 1 ≤ |u| < Z.
(1)

If Z = L, a conventional complementary set is defined.

Definition 1. A set C = {C1,C2, . . . ,CM}, where Ci is a set of K sequences of length
L, is called an (M,K,L, Z)-ZCCS if

ρ(Ci,Cj)(u) =
K∑

k=1

ρ(sik, s
j
k)(u) =





KL, u = 0, i = j,

0, 0 < |u| < Z, i = j,

0, |u| < Z, i ̸= j,

(2)

where Z denotes the ZCZ width and each Ci = {ci0, ci1, . . . , ciK−1} consists of K length-L
sequences for 1 ≤ i ≤M .

In an (M,K,L, Z)-ZCCS, any two Z-complementary codes are called a Z-complementary
mate. If Z = L, a Z-complementary mate becomes the conventional complementary
mate. It is shown that the maximum number of distinct Z-complementary mates is upper
bounded by K⌊L/Z⌋ which is greater than the number K of conventional complementary
mates. When a Z-complementary code set achieves the bound, it is said to be optimal [12].
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Definition 2. Consider C = {C1,C2, . . . ,CM}, where each Ci is a set of K complemen-
tary sequences of length L. Denote by Z(Ci,Cj) the mutual ZCZ width between Ci and
Cj for 1 ≤ i, j ≤M . The average ZCZ of the set C is defined as follows:

Z =

∑M
i=1

∑M
j=1 Z(Ci,Cj)

M2
. (3)

In general, it is challenging to explicitly determine the average ZCZ width for a set
C as in Definition 2. In this paper we will investigate this problem for a set of binary
complementary pairs from generalized Boolean functions.

Recall that generalized Boolean function (GBF) f of the m variables x1, x2, . . . , xm
is a mapping from Zm

2 to Zq. The monomial of degree r is a product of r variables of
the form xj1xj2 . . . xjr where 1 ≤ j1 < j2 < · · · < jr ≤ m. A GBF f can be uniquely
expressed as a linear combination of these 2m monomials 1, x1, . . . , xm, . . . , x1x2 · · ·xm,
where the coefficient of each monomial belongs to Zq. For a GBF f , we define a sequence
f = (ξf0 , ξf1 , . . . , ξf2m−1) of length 2m corresponding to f where fi = f(i1, i2, . . . , im) and
(i1, i2, . . . , im) is the binary representation of the integer i =

∑m
j=1 ij2

j−1.
Davis and Jedwab in [11] established the connection between binary GCPs with

Boolean functions and studied q-ary GCPs with length 2m using the tool of GBFs, where
q is a power of 2. We recall their constructed GDJ pairs as follows:

Theorem 3. [11] Let m be a positive integer and π a permutation of the symbols
{1, 2, · · · ,m}. Let f be a GBF given by

f (x1, x2, · · · , xm) =
q

2

m−1∑

k=1

xπ(k)xπ(k+1) +
m∑

k=1

cπ(k)xπ(k), (4)

where q is a power of 2 and cπ(k) ∈ Zq. Then, for any choice d, d′ ∈ Zq, the sequence pair

(a0, a1) = (f + d, f +
q

2
xπ(1) + d′) (5)

is a complementary pair over Zq of length 2m.

The work was later generalized in [13] where those GBFs have co-domain Zq for any
positive even integer q. In this paper, we consider the GBFs with co-domain Zq where q
is even.

3 ZCZ of two GDJ pairs

This section studies the ZCZ width for GDJ pairs constructed by GBFs.

Theorem 4. Let m be a positive integer and π a permutation of the symbols {1, 2, · · · ,m}.
Let f be a GBF as in (4) and g be a GBF given by

g (x1, x2, · · · , xm) =
q

2

m−1∑

k=1

xπ(k)xπ(k+1) +
m∑

k=1

c′π(k)xπ(k), (6)
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where the first position that (c′π(1), . . . , c
′
π(m)) and (cπ(1), . . . , cπ(m)) differ is at the index t,

1 ≤ t ≤ m, and cπ(t) − cπ(t)′ = q/2. Then, the GDJ pairs

(a0, a1) = (f + d, f +
q

2
xπ(1) + d′), (b0,b1) = (g + d,g +

q

2
xπ(1) + d′)

form a Z-complementary mate of ZCZ width

Z =
1

2

(
2π(t+1) −

m∑

k=t+2
π(k)<π(t+1)

2π(k)
)
, (7)

where the summation is deemed as zero when t = m− 1.

Proof. Note ρ(a,b)(u) = ρ∗(a,b)(−u) for (a,b) ∈ {(a0,b0), (a1,b1)}. To demonstrate
pairs (a0, a1) and (b0,b1) have the ZCZ width Z, below we will investigate the value of

ρ(a0,b0)(u) + ρ(a1,b1)(u) =
L−1−u∑

i=0

ξa0,i−b0,i+u +
L−1−u∑

i=0

ξa1,i−b1,i+u

=
L−1−u∑

i=0

(ξa0,i−b0,i+u + ξa1,i−b1,i+u).

(8)

For a given integer i, let j = i + u; also let (i1, i2, . . . , im) and (j1, j2, . . . , jm) be the
binary representations of i and j, respectively. Denoted by v(i, j) the integer v such that

iπ(v) ̸= jπ(v) and iπ(k) = jπ(k), ∀ 1 ≤ k < v. (9)

We will simply denote v(i, j) as v whenever there is no ambiguity. Then we consider four
cases to show that for each (i, j) pair, either we have ξa0,i−b0,j + ξa1,i−b1,j = 0 or there exist
integers i′ ≤ L− 1− u and j′ = i′ + u ≤ L− 1 such that

ξa0,i−b0,j + ξa1,i−b1,j + ξa0,i′−b0,j′ + ξa1,i′−b1,j′ = 0.

Below we will divide our discussion into four cases.
Case 1 : When v = 1 which means jπ(1) ̸= iπ(1), we have

a0,i − a1,i − (b0,j − b1,j) =
q

2
(jπ(1) − iπ(1)). (10)

Since jπ(1) ̸= iπ(1), from (10) we get ξa0,i−a1,j

ξb0,i−b1,j
= −1, which implies ξa0,i−b0,j + ξa1,i−b1,j = 0.

Case 2 : When 1 < v ≤ t, let i′ = (i1, i2, . . . , 1−iπ(v−1), . . . , im) and j′ = (j1, j2, . . . , 1−
jπ(v−1), . . . , jm) whose binary representations are different from i and j only at the position
π(v − 1) respectively. It is clear that j′ = i′ + u. Then we have

a0,i′ − a0,i =
q

2
iπ(v−2) +

q

2
iπ(v) + cπ(v−1) − 2iπ(v−1)cπ(v−1). (11)
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According to iπ(v−1) = jπ(v−1) and iπ(v−2) = jπ(v−2), we have

a0,i − a0,i′ − (b0,j − b0,j′) =−
q

2
iπ(v−2) −

q

2
iπ(v) − cπ(v−1) + 2iπ(v−1)cπ(v−1)

+
q

2
jπ(v−2) +

q

2
jπ(v) + c′π(v−1) − 2jπ(v−1)c

′
π(v−1)

=
q

2
(jπ(v−2) − iπ(v−2)) +

q

2
(jπ(v) − iπ(v)) + (c′π(v−1) − cπ(v−1))

+ 2(cπ(v−1)iπ(v−1) − c′π(v−1)jπ(v−1))
≡q
2
+ (2iπ(v−1) − 1)(cπ(v−1) − c′π(v−1)) (mod q).

Since cπ(v−1) = c′π(v−1) we have

a0,i − a0,i′ − (b0,j − b0,j′) ≡
q

2
(mod q). (12)

Similarly,

a1,i − a1,i′ − (b1,j − b1,j′) ≡
q

2
(mod q). (13)

Hence, for a pair (i, j = i+ u), if v(i, j) ≤ t, from (12) (13) we can derive ξa0,i−b0,j

ξ
a0,i′−b0,j′

= −1
and ξa1,i−b1,j

ξ
a1,i′−b1,j′

= −1. Thus,

ξa0,i−b0,j + ξa1,i−b1,j + ξa0,i′−b0,j′ + ξa1,i′−b1,j′ = 0, (14)

which implies ρ(a0,b0)(u) + ρ(a1,b1)(u) = 0.
Case 3 : When v = t+1, we have c′π(v−1)− cπ(v−1) = c′π(t)− cπ(t) = q/2 by assumption.

Arguing as in Case 2, from (3) we can obtain

a0,i − a0,i′ − (b0,j − b0,j′) ≡ 0 (mod q)

and
a1,i − a1,i′ − (b1,j − b1,j′) ≡ 0 (mod q).

Then we can derive ξa0,i−b0,j = ξa0,i′−b0,j′ and ξa1,i−b1,j = ξa1,i′−b1,j′ . In this case, it is
possible that

|ρ(a0,b0)(u) + ρ(a1,b1)(u)| ≥ 0.

Case 4 : When v > t + 1, let i′′, j′′ be two integers different from i, j in the position
π(t), i.e. i′′ = (i1, i2, . . . , 1− iπ(t), . . . , im). Then we have

a0,i′′ − a0,i =
q

2
iπ(t−1) +

q

2
iπ(t+1) + cπ(t) − 2iπ(t)cπ(t).

Therefore,

a0,i − a0,i′′ − (b0,j − b0,j′′) =−
q

2
iπ(t−1) −

q

2
iπ(t+1) − cπ(t) + 2iπ(t)cπ(t)

+
q

2
jπ(t−1) +

q

2
jπ(t+1) + c′π(t) − 2jπ(t)c

′
π(t)

=
q

2
(jπ(t−1) − iπ(t−1)) +

q

2
(jπ(t+1) − iπ(t+1)) + (c′π(t) − cπ(t))

+ 2(cπ(t)iπ(t) − c′π(t)jπ(t))
≡(2iπ(t) − 1)(cπ(t) − c′π(t)) (mod q).
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By the assumption that cπ(t) − c′π(t) = q/2, we have

a0,i − a0,i′′ − (b0,j − b0,j′′) ≡
q

2
(mod q) (15)

and
a1,i − a1,i′′ − (b1,j − b1,j′′) ≡

q

2
(mod q). (16)

As discussed above, for a integer u, if v(i, j) > t, where j = i + u, then ρ(a0,b0)(u) +
ρ(a1,b1)(u) = 0. Based on the discussion for Cases 1-4, we see that |ρ(a0,b0)(u) +

ρ(a1,b1)(u)| > 0 can only occur in Case 3, namely, the integers i and j = i + u satisfy
that

iπ(t+1) = jπ(t+1) and iπ(k) = jπ(k), ∀ 1 ≤ k ≤ t, (17)

which implies

u = j − i =
m∑

k=v+2

2π(k)−1(jπ(k) − iπ(k)). (18)

Next we discuss the minimum value of |u|, which corresponds to the ZCZ width, for
possible values of u of the above form. Denote wk = jπ(k)− iπ(k), which takes values from
{0,±1}. From (18) we have

|u| =
∣∣∣2π(t+1)−1wt+1 +

m∑

k=t+2
π(k)>π(t+1)

2π(k)−1wk +
m∑

k=t+2
π(k)<π(t+1)

2π(k)−1wk

∣∣∣

≥
∣∣∣2π(t+1)−1wt+1 +

m∑

k=t+2
π(k)>π(t+1)

2π(k)−1wk

∣∣∣−
∣∣∣

m∑

k=t+2
π(k)<π(t+1)

2π(k)−1wk

∣∣∣

≥
∣∣∣2π(t+1)−1wt+1 +

m∑

k=t+2
π(k)>π(t+1)

2π(k)−1wk

∣∣∣−
m∑

k=t+2
π(k)<π(t+1)

2π(k)−1,

(19)

where the last inequality holds due to the fact that wk ∈ {0,±1}. Furthermore, by the
fact that wt+1 = jπ(t+1) − iπ(t+1) ̸= 0 we have

2π(t+1)−1wt+1 +
m∑

k=t+2
π(k)>π(t+1)

2π(k)−1wk = wt+12
π(t+1)−1


1 +

m∑

k=t+2
π(k)>π(t+1)

2π(k)−π(t+1) wk

wt+1


 .

It is readily seen that ∣∣∣∣∣∣∣
1 +

m∑

k=t+2
π(k)>π(t+1)

2π(k)−π(t+1) wk

wt+1

∣∣∣∣∣∣∣
≥ 1,

which implies ∣∣∣2π(t+1)−1wt+1 +
m∑

k=t+2
π(k)>π(t+1)

2π(k)−1wk

∣∣∣ ≥ 2π(t+1)−1.
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This together with (19) shows that for any u such that i, j = i + u satisfying (17), one
has

|u| ≥ Z = 2π(t+1)−1 −
m∑

k=t+2
π(k)>π(t+1)

2π(k)−1.

That is to say, for any 0 < |u| < Z, we have ρ(a0,b0)(u) + ρ(a1,b1)(u) = 0.

Remark 5. As in many works [5] [14], the ZCZ width in Theorem 4 is essentially a
lower bound of the actual ZCZ width of GDJ pairs. While it is not certain whether
|ρ(a0,b0)(Z) + ρ(a1,b1)(Z)| > 0 in Case 3, experiment results show that Z in Theorem
4 is indeed the actual ZCZ width of GDJ pairs for most permutations.

Remark 6. Suppose in Theorem 4 we choose functions f and g differing at cπ(m), c
′
π(m),

namely, cπ(m) − c′π(m) =
q
2
, and cπ(i) = c′π(i) for 1 ≤ i ≤ m − 1. It is easy to see that we

don’t need to discuss Cases 3 and 4 in the proof of Theorem 4. That is to say, for any
0 < |u| < L, Cases 1 and 2 imply that ρ(a0,b0)(u) + ρ(a1,b1)(u) = 0. This corresponds
to the conventional Golay complementary mates.

From Theorem 4, we can easily obtain the following results.

Corollary 7. Let (a0, a1) = (f + d, f + q
2
xπ(1) + d′) and (b0,b1) = (g+ d,g+ q

2
xπ(1) + d′)

be GDJ pairs as in Theorem 4. Suppose that in f and g, cπ(m−1) − c′π(m−1) = q
2
, and

cπ(i) = c′π(i) for 1 ≤ i ≤ m− 2. Then (a0, a1) and (b0,b1) have ZCZ of width 2π(m)−1.

Corollary 8. Let (a0, a1) = (f + d, f + q
2
xπ(1) + d′) and (b0,b1) = (g+ d,g+ q

2
xπ(1) + d′)

be GDJ paris as defined in Theorem 4. Suppose that in the functions f and g, cπ(m−2) −
c′π(m−2) =

q
2
, and cπ(i) = c′π(i) for 1 ≤ i < m− 2. Then the pairs (a0, a1) and (b0,b1) have

ZCZ width
∣∣2π(m−1)−1 − 2π(m)−1∣∣.

Proof. Substituting t = m − 2 in Theorem 4, when π(m) > π(m − 1) we can derive
Z = 2π(m−1)−1 from (7). Similarly, if π(m) < π(m − 1) then Z = 2π(m−1)−1 − 2π(m)−1.
Therefore, the pairs (a0, a1) and (b0,b1) have ZCZ width Z =

∣∣2π(m−1)−1 − 2π(m)−1∣∣.

The characterization on the ZCZ width of GDJ pairs in Theorem 4 motivates us to
consider the average ZCZ width of a set of GDJ pairs. In Theorem 4 we have the condition
cπ(t) − c′π(t) = q/2. In next section we will consider the average ZCZ width of a set of
binary GDJ pairs.

4 Average ZCZ widths for certain permutations

In this section we will investigate the average ZCZ property of a set of binary GDJ pairs.
As shown in Theorem 3, we can denote by fc,π the m-variate Boolean function associated
with the coefficient vector c ∈ Zm

2 and the permutation π. Define a set

Cπ = {C1,C2, . . . ,CM}, (20)
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where Ci = (fci,π + d, fci,π +
q
2
xπ(1) + d′) is a binary GDJ pair generated by the function

fci,π as described in Theorem 3 and ci ∈ Zm
2 . It is clear that M = 2m. We will investigate

the average ZCZ width of Cπ, denoted as Zπ, for different permutations π on {1, 2, . . . ,m}.
We first give an auxiliary result, which will be frequently used to explicitly calculate

the average ZCZ witdh of Cπ for some permutations π.

Lemma 9. Let Ci be a binary GDJ pair in Cπ = {C1,C2, . . . ,CM} as defined above, and
Zπ,t be given by as in (7) for integers t with 1 ≤ t ≤ m− 1. Then we have

#{Cj ∈ Cπ |Z(Ci,Cj) = Zπ,t} = 2m−t,

where Z(Ci,Cj) is the ZCZ width of Ci and Cj.

Proof. Since Ci,Cj are GDJ pairs which corresponding to fci,π and fcj ,π respectively.
Given fci,π where ci = (ci,0, . . . , ci,k, . . . , ci,m), for fcj ,π where cj = (cj,0, . . . , cj,k, . . . , cj,m),
if ci,k=cj,k for 0 ≤ k < t then Z(Ci,Cj) = Zπ,t. As (cj,t+1, . . . , cj,m) ∈ Zm−t

2 which means
there are 2m−t pairs Cj satisfying Z(Ci,Cj) = Zπ,t.

Lemma 9 facilitates the calculation of Zπ in this section. Based on Theorem 4 and
this lemma, for any permutation π on {1, 2, . . . ,m}, we have

Zπ =

∑2m

i=1

∑2m

j=1 Z(Ci,Cj)

22m
=

2m(
∑m−1

t=1 2m−tZπ,t + 2 · 2m)
22m

= 2−m
m−1∑

t=1

2m−t
(
2π(t+1)−1 −

∑

t+2≤u≤m
π(u)<π(t+1)

2π(u)−1
)
+ 2

=
m∑

j=2

1

2j

(
2π(j) −

∑

j+1≤u≤m
π(u)<π(j)

2π(u)
)
+ 2

= Ψπ + 1,

(21)

where the second equality contains 2 · 2m corresponding to Ci,Cj being the same and
complementary mate, the third equality follows from the form of Zπ,t in (7), and

Ψπ =
m∑

j=1

Ψπ(j) =
m∑

j=1

1

2j

(
2π(j) −

m∑

u=j+1
π(u)<π(j)

2π(u)
)
, (22)

where Ψπ(1) =
1
2

(
2π(1) −∑m

u=2
π(u)<π(1)

2π(u)
)
= 1

2

(
2π(1) − (2π(1)−1 + 2π(1)−2 + · · ·+ 2)

)
= 1.

Below we first determine the average ZCZ with Zπ for certain special permutations π.

Proposition 10. Let πk = (k, . . . ,m, 1, . . . , k − 1) be the permutation on {1, 2, . . . ,m},
where 1 ≤ k ≤ m. Then we have

Zπk
=

1

2

(
2k(m− k − 1) + 2k−m(2k + k − 3) + 6

)
.
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Proof. According to the definition of πk, we have that πk(m− k + 1) = m and

∑

j+1≤u≤m
πk(u)<πk(j)

2πk(u)−1 =





m∑
u=m−k+2

2πk(u)−1, 1 ≤ j ≤ m− k + 1;

0, m− k + 2 ≤ j ≤ m.

Then it follows from (21) that

Zπk
=

m−k+1∑

j=1

2−j
(
2πk(j) −

m∑

u=m−k+2

2πk(u)

)
+

m∑

j=m−k+2

2πk(j)−j + 1

=
m∑

j=1

2−j · 2πk(j) −
m−k+1∑

j=1

2−j
(

m∑

u=m−k+2

2πk(u)

)
+ 1

= (m− (k − 1))2k−1 + (k − 1)2k−m−1 + (2k − 2)(2−(m−k+1) − 1) + 1

= 2k−1(m− k − 1) + 2k−m(2k−1 +
k − 3

2
) + 3.

This completes the proof.

In the following, we will identify the permutation on {1, 2, . . . ,m} such that the corre-
sponding set C = {C1, . . . ,CM}, where M = 2m, has the maximum average ZCZ width.
To this end, we first introduce some notations for presentation simplicity.

Denote by Π the set of all permutations on {1, 2, . . . ,m}. For a permutation π ∈ Π,
we denote by π−1(t) the pre-image of t, where 1 ≤ t ≤ m, under π, i.e., π(π−1(t)) = t.
Define sets

Π1 = {π ∈ Π | π−1(m) > π−1(m− 1)},
Π2 = {π ∈ Π | π−1(m) < π−1(m− 1)}, (23)

and sets
Π1,1 = {π ∈ Π | π−1(m)− π−1(m− 1) = 1},
Π1,2 = {π ∈ Π | π−1(m)− π−1(m− 1) > 1}. (24)

Clearly, Π = Π1 ⊔ Π2 and Π1 = Π1,1 ⊔ Π1,2.

To identify the permutation that gives the largest average ZCZ width, we need the
following lemmas, which give auxiliary results for proving the main theorem.

Lemma 11. Given a permutation ρ ∈ Π2 with s = ρ−1(m) and t = ρ−1(m − 1), choose
π ∈ Π1 such that π(s) = m− 1, π(t) = m and π(j) = ρ(j) for j ̸= s, t. Then Zπ ≥ Zρ.

Proof. Since π(j) = ρ(j) for j ̸= s, t, it’s easy to see that Ψπ(j) = Ψρ(j) for j ∈
{1, 2, . . . ,m} \ {s, t}. Hence, we have

Zπ − Zρ = Ψπ(s) + Ψπ(t)−Ψρ(s)−Ψρ(t) (25)
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and if s = 1 clearly, Ψπ(s)−Ψρ(s) = 0. By π(s) = m and ρ(t) = m− 1 we have

Ψπ(s)−Ψρ(s) = 2−s


2m−1 −

∑

s+1≤u≤m
π(u)<m−1

2π(u) − (2m −
∑

s+1≤u≤m
2ρ(u))




= 2−s


−2m−1 + 2ρ(t) −

∑

s+1≤u≤m
u̸=t

2π(u) +
∑

s+1≤u≤m
u̸=t

2ρ(u)




= 0

(26)

since π(u) = ρ(u) for s+ 1 ≤ u ≤ m and u ̸= t. Similarly, by π(t) = m and ρ(t) = m− 1
we have

Ψπ(t)−Ψρ(t) = 2−t
(
2m −

∑

t+1≤u≤m
2π(u) − (2m−1 −

∑

t+1≤u≤m
2ρ(u))

)

= 2−t


2m−1 −

∑

s+1≤u≤m
u̸=t

2π(u) +
∑

s+1≤u≤m
u̸=t

2ρ(u)




= 2m−t−1.

(27)

Thus, Zπ − Zρ > 0.

Lemma 12. Given a permutation ρ ∈ Π1,2 with s = ρ−1(m − 1) and t = ρ−1(m),
where t ≥ s + 2, choose a permutation π ∈ Π1,1 such that π(s + 1) = m,π(t) = ρ(s +
1), and π(j) = ρ(j) for j ̸= s+ 1, t. Then Zπ ≥ Zρ.

Proof. Since π(j) = ρ(j) for j ∈ {1, . . . ,m} \ {s+ 1, t}, it is easy to see that

Ψπ(j) = Ψρ(j) for j = 2, . . . , s, and j = t+ 1, . . . ,m,

where Ψπ(j), Ψρ(j) are given as in (22). Hence we have

Zπ − Zρ =
m∑

j=2

(Ψπ(j)−Ψρ(j)) =
t∑

j=s+1

(Ψπ(j)−Ψρ(j)) .

By π(s+ 1) = m and ρ(t) = m, we have

Ψπ(s+ 1)−Ψρ(s+ 1) = 2−(s+1)


(2m −

m∑

u=s+2

2π(u))− (2ρ(s+1) −
m∑

u=s+2
ρ(u)<ρ(s+1)

2ρ(u))




= 2−(s+1)


2m − 2ρ(s+1) −

m∑

u=s+2
π(u)≥ρ(s+1)

2π(u)




(28)
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and

Ψπ(t)−Ψρ(t) = 2−t


(2π(t) −

m∑

u=t+1
π(u)<π(t)

2π(u))− (2m −
m∑

u=t+1

2ρ(u))




= 2−t


2π(t) − 2m +

m∑

u=t+1
π(u)≥π(t)

2π(u)


 ,

since π(u) = ρ(u) for u = t+ 1, . . . ,m.
For s+ 2 ≤ j ≤ t− 1, we have

Ψπ(j)−Ψρ(j) =2−j


(2π(j) −

m∑

u=j+1
π(u)<π(j)

2π(u))− (2ρ(j) −
m∑

u=j+1
ρ(u)<ρ(j)

2ρ(u))




=

{
−2π(t)−j, if π(t) < π(j),

0, otherwise,

which implies

t−1∑

j=s+2

(Ψπ(j)−Ψρ(j)) =

{
0, if π(t) = m− 2,∑t−1

j=s+2
π(j)>π(t)

−2π(t)−j, if otherwise.
(29)

Thus, if π(t) = ρ(s+ 1) = m− 2 then

t∑

j=s+1

(Ψπ(j)−Ψρ(j)) = 2−(s+1)(2m − 2ρ(s+1)) + 2−t
(
2ρ(s+1) − 2m

)

> 0,

since t ≥ s+ 2 and
∑m

u=s+2
π(u)≥ρ(s+1)

2π(u) =
∑m

u=t+1
π(u)≥π(t)

2π(u) = 0. Otherwise, from (29) we have

t−1∑

j=s+2
π(j)>π(t)

−2π(t)−j ≥ −2π(t)(2−(s+2) + · · ·+ 2−(t−1)) = −2ρ(s+1)(2−(s+1) − 2−(t−1)),

then

t∑

j=s+1

(Ψπ(j)−Ψρ(j)) ≥ 2−(s+1)


2m − 2ρ(s+1) −

m∑

u=s+2
π(u)≥ρ(s+1)

2π(u)


+ 2−t

(
2ρ(s+1) − 2m

)
− 2ρ(s+1)2−(s+1)

≥ 2−(s+1)
(
2m − 3 · 2ρ(s+1) + 2ρ(s+1)−(t−s−1) − 2m−(t−s−1)

)
> 0,

since ρ(s+ 1) ≤ m− 3. Thus, it shows Zπ ≥ Zρ.
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For any permutation π ∈ Π1,1, define sets

P1 = {π ∈ Π1,1 | π−1(m− 2) = 1, π−1(m− 1) = 2},
P2 = {π ∈ Π1,1 | π−1(m− 2) < π−1(m− 1)},
P3 = {π ∈ Π1,1 | π−1(m− 2) > π−1(m)}.

(30)

Clearly, Π1,1 = P2 ⊔ P3, for these sets we have the following lemmas:

Lemma 13. Given a permutation ρ ∈ P3 with s = ρ−1(m− 1) and t = ρ−1(m− 2) where
s ≥ 2, choose a permutation π ∈ P2 such that π(s) = m− 1, π(s− 1) = m− 2 and π(j) =
ρ(j) for j ̸= s− 1, t. Then Zπ ≥ Zρ.

Proof. Since π(j) = ρ(j) for j ̸= s − 1, t, we can derive that π(t) = ρ(s − 1) and π(t) <
m− 2. Then from 22, we have

Zπ − Zρ =
t∑

j=s−1
(Ψπ(j) −Ψρ(j)) (31)

In (31), for j = s− 1,

Ψπ(s−1) −Ψρ(s−1) = 2−(s−1)


2π(s−1) − 2ρ(s−1) −

m∑
u=s

π(u)<π(s−1)

2π(u) +
m∑

u=s
ρ(u)<ρ(s−1)

2ρ(u)




= 2−(s−1)


2m−2 − 2 · 2π(t) −

m∑

u=s+2
π(u)>π(t)

2π(u)


 ≥ 0.

For s ≤ j ≤ t, we have

t∑

j=s

(Ψπ(j) −Ψρ(j)) = (2−s + 2−(s+1))(2m−2 − 2π(t))− 2−j
t−1∑

j=s+2
π(j)>π(t)

2π(t) − 2−t(2m−2 − 2π(t))

> (2−s + 2−(s+1))(2m−2 − 2π(t))− 2−(s+1)2π(t) − 2−t(2m−2 − 2π(t)) > 0.

Thus, we can derive that
∑t

j=s−1(Ψπ(j) −Ψρ(j)) > 0 which implies Zπ > Zρ.

Lemma 14. For any permutation ρ ∈ Π1,1 \ P1 and π ∈ P1 with π(1) = m − 2 and
π(2) = m− 1. Then Zπ ≥ Zρ.

Proof. Since π ∈ P1 then we have

Zπ = 2−2(2m−2 + 2) + 2−3(3 · 2m−2 + 2) +
m∑

j=4

Ψπ(j) + 2.

Suppose ρ(s) = m− 1, there are three cases as below.
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Case 1 : s = 1, By assumption ρ(1) = m− 1 and ρ(2) = m. Clearly ρ−1(m− 2) ≥ 2.
Suppose ρ(t) = m − 2, when t = 3, chose π ∈ P1 such that π(j) = ρ(j) for 4 ≤ j ≤ m
then

Zρ = 2−2(2m − (2m−1 − 2)) + 2−2 +
m∑

j=4

Ψρ(j) + 2.

Hence, we have

Zπ − Zρ =
m∑

j=2

(Ψπ(j)−Ψρ(j)) = 2−3 · 2m−2 > 0 , (32)

since Ψπ(j) = Ψρ(j) for 4 ≤ j ≤ m. When t > 3, let π(t) = ρ(3) and π(j) = ρ(j) for
3 ≤ j ≤ m and j ̸= t, then

Zπ − Zρ = 2−3(2m−2 + 2) +
m∑

j=4

Ψπ(j)−
m∑

j=3

Ψρ(j)

= 2−3(2m−2 + 2) +
t∑

j=4

Ψπ(j)−
t−1∑

j=3

Ψρ(j)−Ψρ(t)

= 2−3(2m−2 + 2)− 2−3(2ρ(3) −
m∑

u=4
ρ(u)<ρ(3)

2ρ(u))−
t−1∑

j=4
π(j)>π(t)

2−j(2π(t)) + (2π(t) − 2m−2)

≥
(
5

3
· 2m−6 − 2m−2−t + 2m−2t+1 − 2−t +

2m−2t

3

)

> 0.

Case 2 : s = 2, It can be derived from Lemma 13 directly that Zπ − Zρ > 0.
Case 3 : s ≥ 3, According to Lemma 13, it’s sufficient to consider the permutation ρ

such that ρ−1(m−2) < s. Thus there exists π ∈ P1 such that π(j) = ρ(j) for s+2 ≤ j ≤ m,
then we have

Zπ − Zρ = 2−2(2m−2 + 2)) + 2−3(3 · 2m−2 + 2) +
s+1∑

j=4

Ψπ(j)

−
s−1∑

j=2

Ψρ(j)− 2−s


2m−1 −

m∑

u=s+1
ρ(u)<m−1

2ρ(u)


+ 2−(s+1)


2m −

m∑

u=s+2
ρ(u)<m

2ρ(u)


 ,

When s = 3,

Zπ − Zρ > (2m−3 + 2−1 + 2m−5 + 2−2)− 2−2
(
2m−3 − 2

)
+ 2−32m−1 + 2−42m > 0,

and when s > 3,

Zπ − Zρ > (2m−3 + 2−1 + 2m−5 + 2−2)− 2−2(2m−1 + 2) + 2−3(2m−3) + 2−42m−2 > 0.

From the discussion above we show that Zπ > Zρ.
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Proposition 15. Let σ1 = (1), σ2 = (1, 2) and σ3 = (1, 2, 3), and for m ≥ 3, let

σm =





(m− 2,m− 1,m)|| . . . ||σ1, if m ≡ 1 mod 3,

(m− 2,m− 1,m)|| . . . ||σ2, if m ≡ 2 mod 3,

(m− 2,m− 1,m)|| . . . ||σ3, if m ≡ 3 mod 3.

(33)

Then for any permutation π ∈ Π1,1 with (π(1), π(2), π(3)) = (m − 2,m − 1,m), we have
Zσm ≥ Zπ.

Theorem 16. Let Π be the set of permutations on {1, 2, . . . ,m} and σm ∈ Π be the
permutation as given in (33). Then, among all permutations π in Π, the maximum
average ZCZ width of Cπ = {C1, . . . ,CM} is given by Zσm = Ψσm + 1, where

Ψσm =
1

23
(5 · 2m−2 + 14 + Ψσm−3),

and Ψσt = t for t ∈ {1, 2, 3}; or equivalently,

Ψσm = 5 · 2m−5 · 1− 2−6m1

1− 2−6
+

14

8
· 1− 2−3m1

1− 2−3
+

t

23m1
, (34)

where m = 3m1 + t with t ∈ {1, 2, 3}.
Proof. Recall that Π = Π1 ⊔Π2, Π1 = Π1,1 ⊔Π1,2 and Π1 = P1 ⊔ P2, where ⊔ denotes the
union of disjoint sets. Suppose π is the permutation in Π such that the corresponding Zπ.
Lemmas 11 and 12 shows that π belongs to Π1,1. Furthermore, by Proposition 15, we see
that π = σm is the permutation with the maximum average ZCZ width. According to (3)
and (22), it suffices to consider Ψσm and we have

Ψσm =
m∑

j=1

1

2j

(
2σm(j) −

m∑

u=j+1
σm(u)<σm(j)

2σm(u)
)

=
1

2

(
2m−2 − (2m−2 − 2)

)
+

1

22
(
2m−1 − (2m−2 − 2)

)

+
1

23
(
2m − (2m−2 − 2)

)
+

m∑

j=4

1

2j

(
2σm(j) −

m∑

u=j+1
σm(u)<σm(j)

2σm(u)
)

=
1

23
(5 · 2m−2 + 14) +

1

23

m−3∑

j=1

1

2j

(
2σm−3(j) −

m−3∑

u=j+1
σm−3(u)<σm−3(j)

2σm−3(u)
)

=
1

23
(5 · 2m−2 + 14 + Ψσm−3).

Following the above recursive relation, the expression in (34) can be easily obtained.

Below we list the maximum average ZCZ width for the Z-complementary set defined
in (20) for small integers m with 3 ≤ m ≤ 10.
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m 3 4 5 6 7 8 9 10

Zmax 4 43
8

8 105
8

1491
64

349
8

5393
64

84744
512

We show the average ZCZ width of a set composed by all possible GDJ pairs generated
by different GBFs. Now we show that according to the algorithm below we can construct
a set with optimal average ZCZ width.

5 Conclusion

This paper focused on understanding the average ZCZ of complementary sequence sets
motivated by their random deployment nature in practical spread-spectrum communica-
tion systems.

We have first derived a lower bound of their ZCZ width for two GDJ pairs, showing that
the width is associated with the difference in linear coefficients and permutations within
the corresponding GBF. Based on this finding, we have then studied the average ZCZ
width of a set of GDJ pairs and provided the expression for a class of cyclic permutations.
By comparing the average ZCZ width across different permutations, it is found that that
the largest average ZCZ can be achieved by certain permutation family.
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Abstract

Recently, quasi-complementary sequence sets (QCSSs) have attracted interests
for supporting large number of users in multi-carrier code-division multiple-access
(MC-CDMA) systems. In applications, QCSSs that possess large set size and
low correlation properties are desired. This work has two main contributions.
Firstly, we present a method for generating multiple asymptotically optimal ape-
riodic low correlation complementary sequence sets (LC-CSSs) with low inter-set
cross-correlation. Secondly, the combination of proposed LC-CSSs can result in a
large-capacity aperiodic LC-CSS.

1 Introduction

Mutually orthogonal complementary sequence sets (MOCSSs) [1] have found extensive
applications in communication systems owing to their ideal correlation properties, partic-
ularly in the design of radar system waveforms [2], channel estimation [3], etc. It is well
known, the disadvantage of MOCSSs is that the set size cannot exceed the flock size (the
number of constituent sequences) [4], which will limit the applications of complementary
sets in multi-carrier code-division multiple-access (MC-CDMA) systems with large users
to support.

To address this issue, the concept of quasi-complementary sequence set (QCSS), of
which low correlation complementary sequence set (LC-CSS) is one subtype, was initially
introduced by Liu et al. in [5]. One can extend communication capacity and reduce in-
terference by utilizing QCSSs in communications [6]. Numerous studies have been carried

Corresponding author: Tao Liu.
This work was supported in part by the National Natural Science Foundation of China under Grant

62241110, in part by the Central government guides local science and technology development Foundation
under Grant 236Z0403G.



Y. Tian, T. Liu, X. Peng, Y. Li

out in order to design periodic and aperiodic QCSSs. In 2013, Liu et al. [5] proposed
periodic QCSSs over the Singer difference set. Furthermore, Li et al. [7] constructed peri-
odic QCSSs based on almost difference sets. In [8], Luo et al. constructed three classes of
periodic small-alphabet sizes QCSSs. Aperiodic QCSSs have the same important appli-
cations in communication systems. Design of aperiodic QCSSs with various parameters
is an interesting problem. Li et al. [9] proposed three classes of aperiodic LC-CSSs and
one class of low correlation zone complementary sequence sets (LCZ-CSSs). Later, Zhou
et al. [10] constructed QCSSs with new asymptotically optimal parameters. Authors
in [11] constructed aperiodic QCSSs with larger set size from Florentine rectangles. In
[12], aperiodic QCSSs of length pm1

1 pm2
2 were constructed by using multivariate functions.

Recently, the concept of QCSS was extended to two dimension (2-D) and the theoretical
bounds of 2-D quasi-complementary array sets was presented in [13].

On the other hand, to reduce inter-cell interference in multi-cell scene, multiple se-
quence sets possessing favorable inter-set correlation properties are needed. Multiple
optimal zero correlation zone (ZCZ) sequence sets with good cross-correlation between
the different sets were introduced in [14]. Liu et al. [15] constructed aperiodic LC-CSSs
combining several sets of complete complementary codes (CCCs) in 2019. Very recently,
the authors in [16] have derived a new correlation lower bound for QCSSs composed of
several CCCs, and they presented a construction of such QCSSs with flexible-alphabet
sizes, which are convenient for practical applications.

As far as the authors are aware, the design of large-capacity LC-CSSs with multiple
subsets has yet been introduced in other literature. This is the primary motivation of this
paper. In this paper, we construct multiple aperiodic (p2, p, p, p)-LC-CSSs, achieving the
theoretical bound of LC-CSSs presented in [17]. Furthermore, we propose a large-capacity
aperiodic (p2(p− 1), p, p, 2p)-LC-CSS by combining these LC-CSSs.

This paper is structured as follows for the remainder. Fundamental definitions are
presented in Sect. 2. In Set. 3, we present the construction of multiple aperiodic LC-CSSs.
Furthermore, a large-capacity aperiodic LC-CSS is generated through the combination of
these LC-CSSs into a new set. Lastly, the paper is summarized in Sect. 4.

2 Preliminaries

Let c = (c0, c1, · · · , cN−1) and d = (d0, d1, · · · , dN−1) denote two length-N complex-valued
sequences. The aperiodic correlation between c and d at time-shift τ is defined as

R̃c,d(τ)=





∑N−1−τ
t=0 ctd

∗
t+τ , 0 ≤ τ ≤ N − 1∑N−1+τ

t=0 ct−τd∗t , 1−N ≤ τ ≤ −1
0, |τ | ≥ N,

(1)

where d∗t denotes the complex conjugation of dt.
Consider S = {S0,S1, · · · ,SK−1}, having K sequence sets, each sequence set Sk com-

prisesM length-N sequences, i.e., Sk = {sk0, sk1, · · · , skM−1}, skm =
(
skm,0, s

k
m,1, · · · , skm,N−1

)
,

0 ≤ k ≤ K − 1, 0 ≤ m ≤M − 1. The sequence set can be written in a matrix form with
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size M ×N , i.e.,

Sk =




sk0,0, sk0,1, · · · sk0,N−1
sk1,0, sk1,1, · · · sk1,N−1
...

...
. . .

...
skM−1,0, skM−1,1, · · · skM−1,N−1


 . (2)

The set S is called a (K,M,N, δmax)-QCSS if for any Sk1 ,Sk2 ∈ S, where 0 ≤ k1, k2 ≤
K − 1, we have

∣∣∣R̃Sk1 ,Sk2 (τ)
∣∣∣=
∣∣∣∣∣
M−1∑

m=0

R̃
s
k1
m ,s

k2
m
(τ)

∣∣∣∣∣ ≤ δmax, (3)

for k1 ̸= k2, 0 ≤ τ ≤ N − 1 or k1 = k2, 0 < τ ≤ N − 1. Notably, K, M , N , and
δmax represent the set size, the flock size, the length of each constituent sequence, and
the maximum aperiodic correlation magnitude, respectively. QCSSs are divided into two
types: LC-CSS and LCZ-CSS. An LCZ-CSS represents a set of two-dimensional matrices
whose correlation magnitudes are non-zero but relatively low for the non-trivial time-shifts
within a low correlation zone (LCZ). An LC-CSS is produced when the length of the LCZ
is equivalent to the length of each constituent sequence. Specially, when δmax = 0, the
QCSS reduce to (K,M,N)-MOCSS. If δmax = 0 and K =M , we denote S as (M,M,N)-
CCC.

Lemma 1 ([17]). For an aperiodic (K,M,N, δmax)-QCSS, when K ≥ 3M,M ≥ 2 and
N ≥ 2, the parameters meet the inequality,

δmax ≥
√
MN

(
1− 2

√
M

3K

)
. (4)

To analyze the performance, the optimality factor ρ of QCSS is given in the following
definition.

ρ =
δmax√

MN
(
1− 2

√
M
3K

) . (5)

If ρ = 1, the aperiodic QCSS is optimal. The aperiodic QCSS is near-optimal when
1 < ρ ≤ 2.

3 Main Results

In this section, we first construct multiple asymptotically optimal aperiodic LC-CSSs with
low inter-set cross-correlation property. By combining these LC-CSSs, a large-capacity
aperiodic LC-CSS can be generated as a byproduct. Our proposed construction is then
compared to the other construction method.
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3.1 Multiple aperiodic LC-CSSs with low inter-set cross-correlation property

Prior to that, we introduce the subsequent Lemma. Note that the design of permutation
πr
k(t) is inspired by [18].

Lemma 2. πr1
k1
(t) = r1t

2 + t + k1, π
r2
k2
(t) = r2t

2 + t + k2, where 1 ≤ r1, r2 ≤ p − 1,
0 ≤ k1, k2 ≤ p− 1. πr1

k1
(t) and πr2

k2
(t) are permutations of Zp with following properties:

1. When r1 = r2 and k1 ̸= k2, we have π
r1
k1
(t)−πr2

k2
(t) ̸= 0 (mod p), where 0 ≤ t ≤ p−1;

2. When r1 ̸= r2 and k1 = k2, there is only one solution t1 with t1 = 0 satisfying
πr1
k1
(t)− πr2

k2
(t) = 0 (mod p), where 0 ≤ t ≤ p− 1;

3. When r1 = r2 and τ ̸= 0, there is at most one solution t1 with 0 ≤ t1 ≤ p − 1
satisfying πr1

k1
(t)− πr2

k2
(t+ τ) = 0 (mod p);

4. When r1 ̸= r2, k1 = k2, τ ̸= 0 or r1 ̸= r2, k1 ̸= k2, there are at most two solutions
t1, t2 with 0 ≤ t1, t2 ≤ p− 1 satisfying πr1

k1
(t)− πr2

k2
(t+ τ) = 0 (mod p).

Proof.

Case 1. When 1 ≤ r1 = r2 ≤ p − 1 and 0 ≤ k1 ̸= k2 ≤ p − 1, πr1
k1
(t) and πr2

k2
(t) are

both based on mapping from Zp to Zp, thus π
r1
k1
(t) ̸= πr2

k2
(t) (mod p). Therefore, the first

property holds.

Case 2. When 1 ≤ r1 ̸= r2 ≤ p− 1 and 0 ≤ k1 = k2 ≤ p− 1, suppose that πr1
k1
(t) = πr2

k2
(t),

then we have r1t
2 + t+ k1 = r2t

2 + t+ k2, calculate that t1 = 0 (mod p), it indicates that
there is only one solution t1 satisfying πr1

k1
(t)− πr2

k2
(t) = 0 (mod p), where 0 ≤ t ≤ p− 1.

Therefore, the second property holds.

Case 3. When 1 ≤ r1 = r2 ≤ p − 1, 0 ≤ k1, k2 ≤ p − 1 and τ ̸= 0, suppose that
πr1
k1
(t) = πr2

k2
(t+ τ), then we have r1t

2 + t+ k1 = r2(t+ τ)2 + (t+ τ) + k2, calculate that

t = k1−k2
2r2τ

− r2τ+1
2r2

(mod p), it indicates that there is at most one solution t1 satisfying
πr1
k1
(t)− πr2

k2
(t+ τ) = 0, where 0 ≤ t1 ≤ p− 1. Hence, the third property holds.

Case 4. When 1 ≤ r1 ̸= r2 ≤ p− 1, 0 ≤ k1 = k2 ≤ p− 1, τ ̸= 0, or 1 ≤ r1 ̸= r2 ≤ p− 1,
suppose that πr1

k1
(t) = πr2

k2
(t+ τ), we have r1t

2 + t+ k1 = r2(t+ τ)2 + (t+ τ) + k2, then we
have (r1 − r2)t2 − (2r2τ)t − (k2 − k1 + r2τ

2 + τ) = 0, it indicates that there are at most
two solutions t1, t2 satisfying π

r1
k1
(t)− πr2

k2
(t) = 0 (mod p), where 0 ≤ t1, t2 ≤ p− 1. Hence

the forth property holds.

This completes the proof of Lemma 2.

The main construction is given as follows.

Construction 1. Let p ≥ 3 be a prime, Zp denote the ring of integers modulo p, and

ωp = e2π
√−1/p be a primitive p-th root of unity. Let

πr
k(t) = rt2 + t+ k (mod p). (6)
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Define a function f
(r,k,m)
n : Zp → Zp as follows.

f (r,k,m)
n (t) = n · πr

k(t) +mt (mod p), (7)

where 1 ≤ r ≤ p − 1, 0 ≤ k,m, n, t ≤ p − 1. Define p − 1 sequence sets Sr ={
S(r,k,m) : 0 ≤ k,m ≤ p− 1

}
, where

S(r,k,m) =




s
(r,k,m)
0,0 , s

(r,k,m)
0,1 , · · · s

(r,k,m)
0,p−1

s
(r,k,m)
1,0 , s

(r,k,m)
1,1 , · · · s

(r,k,m)
1,p−1

...
...

. . .
...

s
(r,k,m)
p−1,0 , s

(r,k,m)
p−1,1 , · · · s

(r,k,m)
p−1,p−1


 , (8)

and

s
(r,k,m)
n,t = ωf

(r,k,m)
n (t)

p . (9)

Theorem 1. Sequence sets Sr for 1 ≤ r ≤ p − 1 obtained from Construction 1 have
following properties,

1. Each sequence set Sr is an aperiodic (p2, p, p, p)-LC-CSS.

2. The inter-set cross-correlation between any two different LC-CSSs Sr1 and Sr2 is
upper bounded by 2p, i.e.,

∣∣∣∣∣

p−1∑

n=0

R̃
s
(r1,k1,m1)
n ,s

(r2,k2,m2)
n

(τ)

∣∣∣∣∣ ≤ 2p, (10)

for all 1 ≤ r1 ̸= r2 ≤ p− 1, 0 ≤ τ ≤ p− 1 and 0 ≤ k1, k2,m1,m2 ≤ p− 1.

Proof. First, let us prove Part 1.
Let S(r,k1,m1),S(r,k2,m2) ∈ Sr, where 1 ≤ r ≤ p−1 and 0 ≤ k1, k2,m1,m2 ≤ p−1. Then

calculate the aperiodic correlation of S(r,k1,m1) and S(r,k2,m2) as following:

R̃S(r,k1,m1),S(r,k2,m2)(τ)

=

p−1∑

n=0

R̃
s
(r,k1,m1)
n ,s

(r,k2,m2)
n

(τ)

=

p−1∑

n=0

p−1−τ∑

t=0

s
(r,k1,m1)
n,t ·

(
s
(r,k2,m2)
n,t+τ

)∗

= ω−m2τ
p ·

p−1∑

n=0

p−1−τ∑

t=0

ω
t(m1−m2)+n(πr

k1
(t)−πr

k2
(t+τ))

p . (11)

Consider the following four cases.

Case 1. When k1 = k2, m1 = m2 and τ = 0, it is evident that R̃S(r,k1,m1),S(r,k2,m2)(0) = p2.
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Case 2. When k1 = k2, m1 ̸= m2 and τ = 0, then we have R̃S(r,k1,m1),S(r,k2,m2)(τ) =

p ·∑p−1
t=0 ω

t(m1−m2)
p = 0.

Case 3. When k1 ̸= k2 and τ = 0, from the property 1 in Lemma 2, there is no solu-

tion t′ for πr
k1
(t′) − πr

k2
(t′) = 0 (mod p), thus

∑p−1
n=0 ω

n(πr
k1

(t)−πr
k2

(t+τ))
p = 0. Therefore,

R̃S(r,k1,m1),S(r,k2,m2)(τ) = 0 holds.

Case 4. When τ ̸= 0, according to the property 3 in Lemma 2, there is at most one
solution t′ satisfying πr

k1
(t′)− πr

k2
(t′ + τ) = 0 (mod p).

If t′ ∈ [0, p− 1− τ ], we have

R̃S(r,k1,m1),S(r,k2,m2)(τ)

= ω−m2τ
p ·

[
ωt′(m1−m2)
p ·

p−1∑

n=0

ω
n(πr

k1
(t′)−πr

k2
(t′+τ))

p

+

p−1−τ∑

t=0,t ̸=t′

ωt(m1−m2)
p ·

p−1∑

n=0

ω
n(πr

k1
(t)−πr

k2
(t+τ))

p

]

= p · ωt′(m1−m2)−m2τ
p . (12)

If t′ ∈ (p−1−τ, p−1], then∑p−1
n=0 ω

n(πr
k1

(t)−πr
k2

(t+τ))
p = 0, thus R̃S(r,k1,m1),S(r,k2,m2)(τ) = 0.

Otherwise, we have no solution t′ satisfying (πr
k1
(t) − πr

k2
(t + τ) = 0 (mod p), then

R̃S(r,k1,m1),S(r,k2,m2)(τ) = 0.

From the results of above four cases, we conclude that the maximum aperiodic corre-
lation sidelobe amplitude value of Sr is δmax = p.

Now we prove the Part 2.
Let S(r1,k1,m1) ∈ Sr1 ,S(r2,k2,m2) ∈ Sr2 , where 1 ≤ r1 ̸= r2 ≤ p−1 and 0 ≤ k1, k2,m1,m2 ≤

p− 1. Similarly,

R̃S(r1,k1,m1),S(r2,k2,m2)(τ)

= ω−m2τ
p ·

p−1∑

n=0

p−1−τ∑

t=0

ω
t(m1−m2)+n(πr1

k1
(t)−πr2

k2
(t+τ))

p . (13)

Consider the following two cases.

Case 1. When r1 ̸= r2, k1 = k2 and τ = 0, based on the property 2 in Lemma 2, there is
only one solution t′ with t′ = 0 such that πr1

k1
(t)− πr2

k2
(t) = 0 (mod p), then it holds

R̃S(r1,k1,m1),S(r2,k2,m2)(τ)

=

p−1∑

n=0

p−1−τ∑

t=0

ω
t(m1−m2)+n(πr1

k1
(t)−πr2

k2
(t))

p

= ωt′(m1−m2)
p ·

p−1∑

n=0

ω
n(πr1

k1
(t′)−πr2

k2
(t′))

p +

p−1−τ∑

t=0,t̸=t′

ωt(m1−m2)
p ·

p−1∑

n=0

ω
n(πr1

k1
(t)−πr2

k2
(t))

p

= p · ωt′(m1−m2)
p . (14)
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Case 2. When r1 ̸= r2, k1 = k2, τ ̸= 0, or r1 ̸= r2, k1 ̸= k2, according to the property 4 in
Lemma 2, there are at most two solutions t′ and t′′ meeting πr1

k1
(t)− πr2

k2
(t+ τ) = 0 (mod

p).
Suppose that t′, t′′ ∈ [0, p− 1− τ ], we have

R̃S(r1,k1,m1),S(r2,k2,m2)(τ)

= ω−m2τ
p ·

[
ωt′(m1−m2)
p ·

p−1∑

n=0

ω
n(πr1

k1
(t′)−πr2

k2
(t′+τ))

p

+ ωt′′(m1−m2)
p ·

p−1∑

n=0

ω
n(πr1

k1
(t′′)−πr2

k2
(t′′+τ))

p

+

p−1−τ∑

t=0,t̸=t′,t′′

ωt(m1−m2)
p ·

p−1∑

n=0

ω
n(πr1

k1
(t)−πr2

k2
(t+τ))

p

]

= p · ω−m2τ
p ·

(
ωt′(m1−m2)
p + ωt′′(m1−m2)

p

)
. (15)

Suppose that t′ ∈ [0, p− 1− τ ], t′′ ∈ (p− 1− τ, p− 1] or t′ ∈ [0, p− 1− τ ], t′′ unsolved,
we have

R̃S(r1,k1,m1),S(r2,k2,m2)(τ)

= ω−m2τ
p ·

[
ωt′(m1−m2)
p ·

p−1∑

n=0

ω
n(πr1

k1
(t′)−πr2

k2
(t′+τ))

p

+

p−1−τ∑

t=0,t ̸=t′

ωt(m1−m2)
p ·

p−1∑

n=0

ω
n(πr1

k1
(t)−πr2

k2
(t+τ))

p

]

= p · ω−m2τ+t′(m1−m2)
p . (16)

Suppose that t′, t′′ ∈ (p − 1 − τ, p − 1], or t′ ∈ (p − 1 − τ, p − 1], t′′ unsolved, then
∑p−1

n=0 ω
n(πr1

k1
(t)−πr2

k2
(′+τ))

p = 0, thus R̃S(r1,k1,m1),S(r2,k2,m2)(τ) = 0. Otherwise, we have no solu-

tion t′ or t′′ satisfying
(
πr1
k1
(t)− πr2

k2
(′+τ)

)
= 0 (mod p), hence R̃S(r1,k1,m1),S(r2,k2,m2)(τ) = 0.

By summarizing the above discussion, we conclude that
∣∣∣
∑p−1

n=0 R̃S(r1,k1,m1),S(r2,k2,m2)(τ)
∣∣∣ ≤

2p for 1 ≤ r1 ̸= r2 ≤ p− 1, 0 ≤ τ ≤ p− 1 and 0 ≤ k1, k2,m1,m2 ≤ p− 1.
Consequently, the proof of Theorem 1 is completed.

Remark 1. According to Lemma 1, we get the limit of the optimality factor of Sr is

lim
p→+∞

ρ = lim
p→+∞

p√
p2
(
1− 2

√
p

3p2

) = 1. (17)

It implies that the aperiodic LC-CSS Sr generated from Construction 1 is asymptotically
optimal.
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3.2 Large-capacity aperiodic LC-CSS

We can use p − 1 LC-CSSs with low inter-set aperiodic cross-correlation amplitude to
generate a large-capacity aperiodic LC-CSS, as illustrated in the following.

Corollary 1. Let S = S1 ∪ S2 ∪ · · · ∪ Sp−1, obtained S is a large-capacity aperiodic
(p2(p− 1), p, p, 2p)-LC-CSS.

Proof. Each sequence set Sr in Theorem 1 is a (p2, p, p, p)-LC-CSS, where 1 ≤ r ≤ p− 1,
and the intra-set maximum aperiodic cross-correlation amplitudes are p. According to
Theorem 1, the inter-set aperiodic cross-correlation amplitudes are 2p. Consequently, the
set S is a large-capacity aperiodic (p2(p− 1), p, p, 2p)-LC-CSS.

Now calculate the optimality factor of S. limp→+∞ ρ = 2. It indicates that aperiodic
cross-correlation amplitudes of S asymptotically reaches twice concerning the correlation
bound in Lemma 1.

In the following, we give an example to increase the readability of the construction in
this paper.

Example 1. Let p = 5, we can generate four (25, 5, 5, 5)-LC-CSSs, S1,S2,S3,S4 from
Theorem 1. The two LC-CSSs S1 and S2 are presented in Table 1, where each element
denotes a power of ω5. The optimality factor of Sr(1 ≤ r ≤ 4) is ρ = 1.4380, which
means that Sr is near-optimal. Moreover, we can combine these four LC-CSSs to obtain
a large-capacity aperiodic (100, 5, 5, 10)-LC-CSS S = S1 ∪S2 ∪S3 ∪S4 by Corollary 1. A
brief overview of the correlation among the LC-CSSs is provided in Figure 1.
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Figure 1: The correlation magnitudes of the LC-CSSs are illustrated in Example 1
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Table 1: The two (25,5,5,5)-LC-CSSs S1 and S2 of Example 1

S(1,0,0) S(1,0,1) S(1,0,2) S(1,0,3) S(1,0,4) S(1,1,0) S(1,1,1) S(1,1,2) S(1,1,3) S(1,1,4) S(1,2,0) S(1,2,1)

S1

00000

02120

04240

01310

03430

01234

03304

00424

02044

04114

02413

04033

01103

03223

00343

03142

00212

02332

04402

01022

04321

01441

03011

00131

02201

00000

13231

21412

34143

42324

01234

14410

22141

30322

43003

02413

10144

23320

31001

44232

03142

11323

24004

32230

40411

04321

12002

20233

33414

41140

00000

24342

43134

12421

31213

01234

20021

44313

13100

32442

S(1,2,2) S(1,2,3) S(1,2,4) S(1,3,0) S(1,3,1) S(1,3,2) S(1,3,3) S(1,3,4) S(1,4,0) S(1,4,1) S(1,4,2) S(1,4,3) S(1,4,4)

02413

21200

40042

14334

33121

03142

22434

41221

10013

34300

04321

23113

42400

11242

30034

00000

30403

10301

40204

20102

01234

31132

11030

41433

21331

02413

32311

12214

42112

22010

03142

33040

13443

43341

23244

04321

34224

14122

44020

24423

00000

41014

32023

23032

14041

01234

42243

33202

24211

10220

02413

43422

34431

20440

11404

03142

44101

30110

21124

12133

04321

40330

31344

22303

13312

S(2,0,0) S(2,0,1) S(2,0,2) S(2,0,3) S(2,0,4) S(2,1,0) S(2,1,1) S(2,1,2) S(2,1,3) S(2,1,4) S(2,2,0) S(2,2,1)

S2

00000

03011

01022

04033

02044

01234

04240

02201

00212

03223

02413

00424

03430

01441

04402

03142

01103

04114

02120

00131

04321

02332

00343

03304

01310

00000

14122

23244

32311

41433

01234

10301

24423

33040

42112

02413

11030

20102

34224

43341

03142

12214

21331

30403

44020

04321

13443

22010

31132

40204

00000

20233

40411

10144

30322

01234

21412

41140

11323

31001

S(2,2,2) S(2,2,3) S(2,2,4) S(2,3,0) S(2,3,1) S(2,3,2) S(2,3,3) S(2,3,4) S(2,4,0) S(2,4,1) S(2,4,2) S(2,4,3) S(2,4,4)

02413

22141

42324

12002

32230

03142

23320

43003

13231

33414

04321

24004

44232

14410

34143

00000

31344

12133

43422

24211

01234

32023

13312

44101

20440

02413

33202

14041

40330

21124

03142

34431

10220

41014

22303

04321

30110

11404

42243

23032

00000

42400

34300

21200

13100

01234

43134

30034

22434

14334

02413

44313

31213

23113

10013

03142

40042

32442

24342

11242

04321

41221

33121

20021

12421

3.3 Comparison with previous works

The most of existing parameters of aperiodic QCCSs are listed in Table 2. The QCSSs
reported in [15, 10, 11] are constructed by combining multiple sets of CCCs, whereas our
construction is based on combining multiple sets of LC-CSSs. When M and N is prime,
this paper can obtain multiple subsets LC-CSSs and form a large set LC-CSS, which results
in a larger set size than the literature [15, 9, 10, 11]. For example, when M = N = 5,
one (20, 5, 5, 5)-LC-CSS can be provided from [15, 10, 11], one (30, 5, 5, 5)-LC-CSS can
be generated from [9], four (25, 5, 5, 5)-LC-CSSs and one (100, 5, 5, 10)-LC-CSS can be
obtained in this paper from Th.1 and Co.1.
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Table 2: The parameters of aperiodic QCSSs

Ref. Set size Flock size Sequence length δmax Parameter condition(s)

Th.2 [15] p(p− 1) p p p p ≥ 3 is a prime.

Th.1 [9] q(q + 1) q q q q is the power of a prime.

Th.3 [9] q2 q q − 1 q q ≥ 5 is the power of a prime.

Th.2 [10] N(p0 − 1) N N N
N ≥ 5 is an odd, and the

minimum prime factor of N is p0.

Th.4 [11] N × F (N) N N N

N ≥ 2 is an integer, F (N)

represents the largest number of

rows that a Florentine rectangle

of size F (N)×N can have.

Th.1 Proposed p2 p p p p ≥ 3 is a prime.

Co.1 Proposed p2(p− 1) p p 2p p ≥ 3 is a prime.

4 Conclusion

This paper presents a method to construct multiple aperiodic LC-CSSs with low inter-
set cross-correlation properties. Each aperiodic quasi-complementary sequence set is
(p2, p, p, p)-LC-CSS, and the parameters are asymptotically optimal. Moreover, a large-
capacity aperiodic (p2(p− 1), p, p, 2p)-LC-CSS can be obtained by combining p − 1 se-
quence sets. As communication technology improves, it is promising for researchers to
create more various quasi-complementary sequences to meet communication system needs.
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Abstract

Future wireless communication networks are characterized by the heterogeneous
multi-tier infrastructure, which require the various levels of quality-of-services (QoSs)
for different tiers. In this paper, we propose a novel type of frequency hopping (FH)
with hierarchical level of Hamming correlations values (i.e., hierarchical FH for
short). A construction algorithm of hierarchical FH sequence set (FHS) is proposed
and its hierarchical Hamming property is demonstrated by an example. As a study
case, the developed FHS set is imposed in asynchronous and heterogeneous multi-
tier uplinks networks. The simulated results reveal that the proposed hierarchical
FHS can provide multi-level bit-error-rate (BER) for various tiers networks; mean-
while, guarantee the superior transmission quality by significantly suppressing the
inter- and intra- tier interferences.

1 Introduction

In the fifth cellular network and beyond (5G/B5G), a heterogeneous multi-tier architecture
which consists of macro-cells (MC) and small cells (SC, including micro-cells, pico-cells

∗Qi Zeng is supported by Sichuan Science and Technology Program under Grant 2023NSFSC0480 and
in part by Open Fund for Key Laboratory of Internet of Things Standards and Applications in Ministry
of Industry and Information Technology under Grant 202303.
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and femto-cells) is the fundamental network infrastructure [1]. In the multi-tier networks,
hierarchical quality-of-services (QoSs) which refer to the error-rate, spectral efficiency,
latency and so forth, are required for various tiers, as illustrated in Fig. 1. For example,
the network tier serving for the connected autonomous vehicles should require much higher
QoS than the network tier serving for the wireless personal applications of pedestrians.
Actually, in the PHY the multi-QoSs always refers to multi-level BERs. Besides, due to
the natures of heterogeneous architecture, multi-tier interferences including the inter-tier
and intra-tier interferences, are the critical challenges that degrade the performance.

Figure 1: The infrastructure of heterogeneous multi-tier networks with hierarchical
QoSs requirements. The desired signal may be impaired by the inter- and intra- tiers
interferences.

The traditional pseudo-random FH technique and its FH sequence set (FHS) [2, 3, 4,
5, 6, 7] can efficiently combat various interference, channel fading and jamming attacks;
however, it is unable to provide hierarchical QoSs, due to the fact that each available
frequency-slot in these pseudo-random FHS sets just follows a near unform-distribution.
The uniform-distribution property determines that FHS has only single-level values of
Hamming cross-/auto-correlations (i.e., frequency-hits). Thus the traditional FH is not
suitable to the heterogeneous multi-tier networks. It is well known that the BER per-
formance of FH multi-access (FHMA) system is closely related to the Hamming cross-
correlation value. By our previous study [8], the multi-QoSs goal for heterogeneous multi-
tier can be achieved by delicately controlling the values of Hamming cross-correlations
(e.g., frequency-hit rate). Taking the case of two-level hierarchical FHS set as the in-
stance, the tier with high-QoS FHS (i.e., HQoS-FHS or HQoS-tier) should have the lower
value of Hamming correlation, while the tier with low-QoS FHS (i.e., LQoS-FHS or LQoS-
tier) is opposite. In addition, both high-QoS and low-QoS tiers should efficiently reduce
the inter- and intra- tier interferences.

The prototype of two-level hierarchical FHS is firstly developed for smart grid com-
munication networks[8]. The smart grid communications require the various QoSs of the
data transmission for diversified power services. Based on this inspiration, recently a
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new FH technique with two-level hierarchy was proposed and adopted by users located
in cell edge to attain the prioritized radio-access [9]. However, these hierarchical FHSs
have the drawback: they may experience all frequency-hits in the entire FHS period at
some large access delays (i.e., asynchronous access), thus leading to the worst error-rate.
Since the heterogeneous multi-tier networks always follows the asynchronous access, the
aforementioned FHSs are not suitable to the heterogeneous multi-tier scenarios.

In this paper, we will propose a strong two-level hierarchical FH technique, which can
provide optimal two-level Hamming correlations in the asynchronous access, also offer
the low intra- and inter- tier interferences to heterogeneous multi-tier networks. The
construction algorithm of such a hierarchical FH pattern is proposed via the series of
mathematical transformations based on a given optimal pseudo-random FHS set. As a
study case, the developed FHS set is imposed into the FH-based OFDM in asynchronous
heterogeneous multi-tier networks, and the multi-level BERs are investigated and verified
by extensive simulations.

2 Requirement of Hierarchical FHS Set

First, we introduce the definition of Hamming correlation with regard to FHS set.

Definition 1. Let S = {s(k)|k = 1, 2, · · · , K} denote an FHS set with K sequences over

a given frequency set F = {f1, f2, · · · , fq} with size q, where s(k) =
(
s
(k)
0 , s

(k)
1 , · · · , s(k)L−1

)
,

is the k-th sequence with length L. The Hamming correlation function of s(u) and s(v) at
the integer delay τ is defined as

Huv(τ |s(u), s(v)) =
L−1∑

i=0

h
[
s
(u)
i , s

(v)
i+τ

]
, s(u,v) ∈ S (1)

where h[x, y] = 1 for x = y denotes the frequency-slot x colliding with another one y,
whilst h[x, y] = 0 for x ̸= y denotes hit-free. The subscript addition (·)i+τ is performed
modulo L. Further, for u = v, Huu(·) denotes Hamming auto-correlation, and Huv(·)
denotes Hamming cross-correlation for u ̸= v.

From this definition, the Hamming correlation function denotes the total number of
the frequency hits over a whole length of sequence L at the relative delay τ . The Hamming
correlation function determines the capability of anti-interference, anti-jamming and so
forth, which is the most critical properties for FH multi-access (FHMA) systems.

Next, we define the maximum Hamming (out-of-phase) auto-correlation and cross-
correlation of S as follows, respectively.

Ha(S) = max
{
Huu(τ)|s(u) ∈ S, 0 < |τ | ≤ L− 1

}
,

Hc(S) = max
{
Huv(τ)|s(u), s(v)∈S, u ̸=v, |τ |≤L−1

}
. (2)

For ease understanding, an two-level hierarchical FHS set S is briefly introduced in this
section, which can be easily extend to the generalized case of multi-level case. According
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to the various levels of Hamming correlation values, the FHS set S can be separated into
two disjoint subsets

S = {S1;S2},S1 ∩ S2 = ∅, (3)

where S1 with low Hamming cross-correlation value applied to the high QoS (HQoS) tier
and S2 with high Hamming cross-correlation value applied to the low QoS (LQoS) tier,
that is, Hc(S1) < Hc(S2).

To realize the optimal performance in FHMA systems, it is generally desired that S1

and S2 have the following requirements under the given number of frequency slot q.

• The size of single FHS set S1 (and S2) should be as large as possible.

• The length of sequence in S1 (and S2) should be as long as possible.

• The Hamming cross- and (out-of-phase) auto- correlation values within S1 (and S2)
should be as small as possible.

• The Hamming cross-correlation value of S1 is lower than that of S2 .

• The Hamming cross-correlation between S1 and S2 should be as small as possible.

The first three properties are the required ones for traditional pseudo-random FHS,
while the remaining ones are the additional properties for the proposed FHS set. Based
on the theory of the code design, meeting all above requirements will significantly increase
the design difficulty.

3 Design and Analysis of Two-Level Hierarchy FH Pattern

In this section, we firstly propose a construction algorithm of FHS set with two-level
hierarchy, i.e., S = {S1;S2}, where S1 denotes the HQoS FHS set and S2 denotes the
LQoS one. Then, an example is presented to verify its hierarchical Hamming correlation
properties.

Before demonstrating the construction algorithm, we define the two-level hierarchical
FHS sets S1 and S2 as follows respectively,

S1 =
{
s
(k)
1 |k = 1, 2, · · · , KS1

}
,S2 =

{
s
(k)
2 |k = 1, 2, · · · , KS2

}
, (4)

where KS1 and KS2 denote the sizes of S1 and S2, respectively. The sequences in S1 and
S2 are denoted as

s
(k)
1 =

(
u
(k)
0 , u

(k)
1 , · · · , u(k)L−1

)
, s

(k)
2 =

(
w

(k)
0 , w

(k)
1 , · · · , w(k)

L−1

)
, (5)

where L is the length of these sequences.
Next, we define a cyclic v-digit(s) shift operation, where v is a non-negative integer.

Given a row (or column) vector g = (g0, g1, · · · , gL−1) with length L, the cyclic v-digit(s)
shift operation on g is defined as

g⟨v⟩ := (gv, gv+1, · · · , gL−1, g0, · · · , gv−1), (6)

where the subscript addition (·)a+b is performed modulo L.
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3.1 Construction Algorithm

The two-level hierarchical FHS set S = {S1;S2} can be constructed via the following steps.
Step 1: Given a prime FHS set C with size Kc as following

C =
{
c(k)|k = 1, 2, · · · , Kc

}
,

c(k) =
(
c
(k)
0 , c

(k)
1 , · · · , c(k)Lc−1

)
, c

(k)
l ∈ GF(p), (7)

where p is a prime and Lc is the length of prime FHS. Based on the properties of prime
sequence, we have Lc = p and Kc = p− 1.

In addition, we define a new subset C which is obtained from C excluding c(k1), that
is,

C = C\c(k1),∀ k1 = 1, 2, · · · , Kc, (8)

where C has length p and size p− 2. The sequence set C will be utilized to construct the
LQoS FHS set S2.
Step 2: Based on the selected sequence c(k1) from the prime FHS set C, a new sequence
set G is obtained as follows via performing the cyclic v-digit(s) shift operation on c(k1).

G=
{(

c(k1)
)<v> |v=0, 1, 2, · · · , p−1

}
. (9)

The set G can be written as the matrix with the column-wise manner, that is,

G=[g0,g1, · · · ,gp−1]p×p , (10)

where the i-th column vector in G gi = [g
(i)
0 , g

(i)
1 , g

(i)
2 , · · · , g(i)p−1]

T, g
(i)
l ∈ GF (p).

Step 3: Given a small positive integer Z, 0 < Z < p, we define Z non-negative integers
{a1, a2, · · · , aZ |ai > 1}, where ai ̸= aj if i ̸= j. In addition, we select Z column-vectors
as follows.

u1 = [p, p+ 1, · · · , 2p− 1]T,

u2 = [2p, 2p+ 1, · · · , 3p− 1]T,
...

uZ = [Zp, Zp+ 1, · · · , (Z + 1)p− 1]T. (11)

Based on (10) and (11), multiple matrices can be obtained as follows.

G0 = [g0,u1,u2, · · · ,uZ ],

G1 = [g1,u
⟨a1⟩
1 ,u

⟨a2⟩
2 , · · · ,u⟨aZ⟩Z ],

...

Gp−1=
[
gp−1,u

⟨(p−1)a1⟩
1 ,u

⟨(p−1)a2⟩
2 , · · · ,u⟨(p−1)aZ⟩Z

]
,

(12)
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where u
⟨v⟩
i denotes the cyclic v-digit(s) shifting operator on the column vector ui. Then

a new matrix S1 can be obtained as follows via the cascading all matrices shown in (12).

S1 = [G0,G1,G2, · · · ,Gp−1]p×p(Z+1) . (13)

The matrix S1 by reforming it as a row-wise manner is namely the HQoS FHS set.

The k-th row vector in S1 is the k-th HQoS FHS s
(k)
1 =

(
u
(k)
0 , u

(k)
1 , · · · , u(k)L−1

)
.

Step 4: We select the first row vector of S1 (i.e., s
(1)
1 ) as the base FHS to further generate

the LQoS FHS set1. Based on the construction steps shown in (12) and (13), s
(1)
1 can be

also denoted as

s
(1)
1 =

(
g
(0)
0 ,u

(1:Z)
0 , g

(1)
0 , u

⟨a(1:Z)⟩
0 ,· · · , g(p−1)0 , u

⟨(p−1)a(1:Z)⟩
0

)
(14)

where u
(1:Z)
0 and u

⟨ia(1:Z)⟩
0 denote these Z elements which are the first elements of column

vectors in [u1,u2, · · · ,uZ ], and in [u
⟨ia1⟩
1 ,u

⟨ia2⟩
2 , · · · ,u⟨iaZ⟩Z ] as shown in (11), respectively.

Based on (14), we design a mapping operatorM(g
(i)
0 ) which maps the element g

(i)
0 ∈

GP (p) to a specific vector, that is,

M(g
(0)
0 ) : g

(0)
0 7→

[
g
(0)
0 , u

(1:Z)
0

]
,

M(g
(i)
0 ) : g

(i)
0 7→

[
g
(i)
0 , u

⟨ia(Z:1)⟩
0

]
, i ̸= 0, (15)

where the operator ’A 7→ B’ denotes the entry A is replaced by B. u⟨ia(Z:1)⟩ denotes Z
elements with the inverse order of u

⟨ia(1:Z)⟩
0 , that is, the first elements of column vectors

in [u
⟨iaZ⟩
Z ,u

⟨iaZ−1⟩
Z−1 , · · · ,u⟨ia2⟩2 ,u

⟨ia1⟩
1 ].

According to the above mapping operation, the element c
(k)
i , k ̸= k1 in the set C as

shown in (8) can be extended, that is, different values of c
(k)
i are mapped to different

sub-vectors as shown in (15). Then the LQoS FHS set S2 is obtained as following,

S2=
{(
w

(k)
0 , w

(k)
1 , · · · , w(k)

L

)}

:=
{(
M(c

(k)
0 ),M(c

(k)
1 ), · · · ,M(c

(k)
p−1)

)}
, k ̸= k1, (16)

where
(
c
(k)
0 , c

(k)
1 , · · · , c(k)p−1

)
∈ C. According to above construction, it is easy to obtain

that the length of S2 is L = p(Z + 1) and the size of S2 is KS2 = Kc − 2 = p− 2.

3.2 An Example of Two-Level hierarchical FH Pattern

In this subsection, an example of two-level hierarchical FH pattern and its Hamming
correlation properties are presented.

1Other row vector of S1 is applicable as well.
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Table 1: The comparisons of Hamming correlations among the proposed FHS set and
other FHS sets with Z=2.

τ -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Proposed Huv(τ |S1) 0 5 0 0 5 0 0 0 0 0 5 0 0 5 0
FHS Huv(τ |S2) 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0

Huv(τ |S1,S2) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Huu(τ) 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0

Multi-QoS Huv(τ |S1) 0 15 0 0 15 0 0 0 0 0 15 0 0 15 0
FHS in [8] Huv(τ |S2) 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0

Huv(τ |S1,S2) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Huu(τ) 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0

Trad. Huv(τ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FHS in [5] Huu(τ) 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0

· u ̸= v.

Example 1 : Let Z = 2, p = 5 and [a1, a2] = [2, 3], the HQoS FHS set S1 and the LQoS
FHS set S2 can be generated as shown below.

s
(1)
1 = {0, 5, 10, 1, 7, 13, 2, 9, 11, 3, 6, 14, 4, 8, 12};
s
(2)
1 = {1, 6, 11, 2, 8, 14, 3, 5, 12, 4, 7, 10, 0, 9, 13};
s
(3)
1 = {2, 7, 12, 3, 9, 10, 4, 6, 13, 0, 8, 11, 1, 5, 14};
s
(4)
1 = {3, 8, 13, 4, 5, 11, 0, 7, 14, 1, 9, 12, 2, 6, 10};
s
(5)
1 = {4, 9, 14, 0, 6, 12, 1, 8, 10, 2, 5, 13, 3, 7, 11}.

s
(1)
2 = {0, 10, 5, 2, 11, 9, 4, 12, 8, 1, 13, 7, 3, 14, 6};
s
(2)
2 = {0, 10, 5, 3, 14, 6, 1, 13, 7, 4, 12, 8, 2, 11, 9};
s
(3)
2 = {0, 10, 5, 4, 12, 8, 3, 14, 6, 2, 11, 9, 1, 13, 7}.

From the example, we obtain the following parameters: KS1 = 5, KS2 = 3, L = 15
and the size of available frequency-slots set q = 15. In addition, the obtained FHSs have
a good randomness since frequency-slot elements (q = 15 frequency-slots) in each FHS
evenly spread over the entire FHS set.

The typical Hamming correlations of the proposed {S1;S2} and the comparisons among
other FHS sets are shown in Table 1 in details. For fair comparisons, the FHS sets in Tab.
1 have the same parameters, i.e., q, and L. The construction algorithms of the previous
two-level hierarchical FHS set and the traditional pseudo-random FHS set are referred to
[8] and [5], respectively.

Observed from the Tab. 1, the Hamming correlation of S1 is equal to zero, and out-
performs S2 for the time-shift |τ | ≤ Z (i.e.,the quasi-synchronous multi-tier networks).For
the asynchronous case (Z < |τ | < L), the proposed FHS set gets the best performance
due to lowest Hamming correlations. However, the previous two-level hierarchical FHS
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set in [8] attains the whole hits (i.e., Huv = 15) thus leading to the disastrous BER degra-
dation, which is wholly unacceptable for the asynchronous two-tier networks. Besides,
the Hamming cross-correlation of traditional pseudo-random FHS has the single value for
any two FHSs (i.e., Huv ≡ 1), which cannot provide various QoSs for two-tier networks.

Overall, via this example, the properties of the proposed FHS set meet the technique
requirements of hierarchical FHS set mentioned in Section 2. The similar conclusions can
be drawn for the general cases with other Zs, ps and {ai}i.

4 BERs of the proposed Hierarchical FHS set applied in het-
erogenous networks

4.1 Transceiver of hierarchical FH based OFDM System

In heterogeneous multi-tier networks, the FH based OFDM transmitter (i.e., FH/OFDM)
with Nb branches is introduced, as shown in [10], except that the proposed hierarchical
FHSs are integrated into OFDM sub-branches. In this transmitter, the entire bandwidth
is evenly divided into Nb non-overlapped sub-bands {Fl, l = 0, 1, · · · , Nb − 1}, and each
sub-band contains q frequency slots, i.e., ||Fl|| = q. The active sub-carriers of the l-th sub-
branch are hopped within Fl according to the proposed hierarchical FHS set S = {S1,S2},
which is as shown in Section 3. For simplicity, it is assumed that one OFDM symbol
is transmitted during one hop interval T . Then, the transmitted signal of the k-th user
during the n-th hopping interval can be written as

S(k)(t) =

Nb−1∑

l=0

√
2P (k)d

(k)
l (n) cos

[
j2π

(
fl +

s
(k)
n

T

)
t

]
,

nT ≤ t < (n+ 1)T, (17)

where d
(k)
l (n) denotes the baseband symbol on the l-th branch. In the following analysis,

the binary PSK (BPSK) mapping scheme is employed, thus d
(k)
l (n) is randomly gener-

ated the symbol from the alphabet set {−1, 1}. fl is the first frequency slot in the l-th
branch, which can be set as ql/T guaranteeing that the Nb sub-bands are not overlapped.

s
(k)
n denotes the instantaneous hopped-frequency slot of the k-th user, where {s(k)n |n =

0, 1, 2, · · · } ⊂ S1 is adapted by users in the HQoS tier, and {s(k)n |n = 0, 1, 2, · · · } ⊂ S2 is
utilized by users in the LQoS tier. P (k) denotes the transmitting power of the k-th user.

In this paper, we assume that the received envelop of signal in base-station (BS)

Γ(k) =
√
2P (k) follows an i.i.d. Rayleigh distribution. In addition, a practical case of

heterogeneous multi-tier networks with arbitrary access delays (i.e., asynchronous access
mechanism) is considered in this paper, then the received signal at the BS is shown as

r(t) =
K∑

k=1

S(k)(t− τk) + η(t), (18)

where K denotes the number of users in the entire multi-tier networks, including the high-
QoS users and the low-QoS users). τk is the arbitrary access delay of the k-th user, which
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Figure 2: The BER comparisons between HQoS- and LQoS- tiers users in quasi-
synchronous multi-tier networks by employing various FHSs.

uniformly distributed over duration of the entire sequence length. η(t) represents the
complex additional white Gaussian noise (AWGN) with two-sided power spectral density
of N0/2.

At the BS, the receiver structure of FH/OFDM system is shown in Fig. 2, which
consists of Nb receiver branches. In each branch, the received signals r(t) are first put
into dehoppers, of which local frequencies are controlled by the given FHS. Then the low-
pass-filter (LPF) with bandwith 2/T following the dehopper. Subsequently, the signal
in each branch is processed by the correlator. The output of correlator is put into the
demodulator.

4.2 BER analysis via simulations

In this section, the performance of the FH/OFDM system employing the developed hi-
erarchical FHS set will be evaluated. To demonstrate the merits of our developed FHS
set, the quasi-synchronous access mechanism (i.e., D ≤ ZT ) and the a-synchronous ac-
cess mechanism (i.e., D > ZT ) are adopted in multi-tier networks respectively in the
following simulations. The employed two-level hierarchical FHS sets {S1;S2} in the fol-
lowing simulations are as shown in Example 1 in Section 3.2, where the parameters are
(q,K1, K2, L, Z) = (15, 5, 3, 15, 2).

The BER comparisons of the proposed FH/OFDM multi-tier networks employing the
various FHS sets are plotted in Fig. 2 under quasi-synchronous mechanism and in Fig.
3 under asynchronous mechanism, respectively. For comparison, two types of classic
FHS sets (i.e., the completely random FHS and the previous hierarchical FHS in [8]) are
investigated as well under the same conditions, e.g., the number of frequency slots q, the
length of FHS L. The system parameters are set as: K1 = 5, K2 = 3.

In Figs. 2-3, we find that our proposed hierarchical FHS and the previous FHS in [8]
can attain two-level BERs for two-tiers networks but the random FHS set fails. In the
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Figure 3: The BER comparisons between HQoS- and LQoS- tiers users in asynchronous
multi-tier networks by employing various FHSs.
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Figure 4: The average BERs of the proposed hierarchical FHSs with various number of
users K1 and K2.

quasi-synchronization, the performance of our proposed FHS set coincides with that of
FHS in [8], since these two types of FHS sets have the same Hamming correlation value
when D < 2T which is as shown in Tab. 1. However as for the a-synchronization scenario
shown in Fig. 3, the previous FHS in [8] can not provide two-level QoSs, the FHS set S1

even is inferior to S2 due to the whole-hits occurrence of S1 at some large access delays,
e.g., Huv(S1||τ | = 3, 6) = L = 15. By employing the FHS set proposed in this paper, the
two-level QoSs target can readily restore, as illustrated in Fig. 3.

The average BERs of the HQoS- and LQoS- tiers with various number of users K1

and K2 are plotted in Fig. 4. The left sub-figure is for the HQoS-tier BERs, and the right
one is for the LQoS-tier BERs. The results in these figure can also quantify the impacts
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of intra- and inter- tiers interferences on the BERs of HQoS- and LQoS- tiers due to the
frequency-hits of FHS set. Here, we will take the figure of HQoS-tier case as example to
explain the BER behavior. Obtained from this sub-figure, the BER follows descent as
the K1 decreases due to the reductions of the multi-user interference contributed from
intra-tier. The BER behavior of LQoS-tier follows the same trend as that of HQoS-tier,
of which explanation is omitted due to the limited space.

5 Conclusions

This paper is dedicated to the design and analysis of a hierarchical FHS set and its
application to heterogeneous multi-tier FH/OFDM networks. As an improvement of
the traditional FHS set with single-level Hamming correlation, the hierarchical FHS set
attains two-level Hamming correlations to match the two-level QoSs requirement. The
newly developed FHS set S = {S1;S2} enjoys the following properties: the FHS subset S1

with lower frequency-hit rate is applicable to HQoS-tier networks, while the FHS set with
higher frequency-hit rate S2 is applicable to LQoS-tier networks. The more attractive
merits are that the FH subsets S1 and S2 possess the minimum Hamming correlation for
the large access delay, which is very helpful to the asynchronous multi-tier networks.

To evaluate the enabling of two-level QoSs via the proposed FHS set, we investigated
the FH/OFDM system employed with such an FHS set in multi-tier uplinks. The simu-
lation results have shown that, in aid of the hierarchical FHS set, the FH/OFDM system
conveniently implements the multi-level BERs target, meanwhile, eliminating the intra-
and inter-tier interference efficiently. In our future work, some interesting topics following
this paper will be studied, such as, the bounds on the Hammming correlation of the multi-
level hierarchy FHS, the construction algorithm of generalized multi-level hierarchy FHS
and so forth.
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Abstract

In this paper, first we introduce the concept of circular quasi-Florentine rect-
angles and propose circular quasi-Florentine rectangles when N is of the form pn,
where p is any prime number. Next, we design polyphase sequence sets with new
parameters using the proposed circular quasi-Florentine rectangles. The proposed
polyphase sequence sets are optimal with respect to the Welch bound.

1 Introduction

Circular Florentine rectangles first appeared around mid 1980’s in the remarkable works
of T. Etzion, S. Golomb and H. Taylor [1, 2]. Circular Florentine rectangles are matrices
of size Fc(N) × N , where each of the N symbols 0, 1, 2, · · · , N − 1 appears exactly
once in each of the Fc(N) rows. Additionally, for any two symbols a and b, and for each
m from 1 to n, there is at most one row in which b is the m-th symbol to the right of
a when the rows are considered to be circular. Several conjectures were proposed in [2]
about the availability of circular Florentine rectangles for different values of N . Working
towards this direction Song [3] constructed several circular Florentine rectangles through
computer search. However, systematic construction of circular Florentine rectangle still
remains open other than the cases when N = p is a prime number [2].

Recently, circular Florentine rectangles emerge as an efficient combinatorial tool to
design several sequence sets with various desired correlation properties. In two separate



Avik Ranjan Adhikary, Zhengchun Zhou, Yang Yang

works, based on circular Florentine rectangles, Zhang et al. [4] and Song et al. [5] proposed
polyphase sequence sets, which are asymptotically optimal with respect to the Welch
bound [6]. The set size of all these sequence sets highly depends on the number of rows
Fc(N) of the corresponding circular Florentine rectangle. Since 1991 till date, very few
research work has been reported towards the construction of circular Florentine rectangles
for various values of N . Moreover, almost all the existing works are computer search
results.

Recent applications of circular Florentine rectangles in desiging sequences with desired
correlation properties motivates us to design circular Florentine rectangles with large
number of rows for a given N . In [2] it is proved that Fc(N) = N − 1, when N is prime,
and provided a systematic construction. It is also conjectured in [2] that when N is not
prime, Fc(N) cannot achieve the value N−1. In his work in [3], Song compiled all possible
values of Fc(N), whenN is odd. It is also proved in [3] that for evenN , Fc(N) = 1. In view
of these facts, it is a challenging task to construct circular Florentine rectangles with large
number of rows, when N is not prime. Working towards this direction, we introduce a new
concept of “circular quasi-Florentine rectangles”. In circular quasi-Florentine rectangles
we preserve all the properies of circular Florentine rectangles other than the fact that
every row contains N − 1 elements instead of N elements. In other words, one of the
element is missing in each of the rows. We also propose a construction of circular quasi-
Florentine rectangle for the cases when N = pn. We show that for these cases we can
obtain a maximum of FQ

c (N) = pn rows. Also, when N is even and is of the form pn,
then also we can achieve pn number of rows, earlier which was only one.

Next, to demonstrate the applications of the proposed circular quasi-Florentine rect-
angles in designing sequence sets, we propose a class of periodic polyphase sequence sets
using the proposed circular quasi-Florentine rectangles. Polyphase sequence sets achieving
Welch bound [6] has a rich literature. Interested readers can go through [4,7] and the ref-
erences therein. In summary, polyphase sequences which achieves the Welch bound, have
important applications in communication systems [8]. Recent works of Zhang et al. [4],
Song et al. [5] motivates us to check the applications of the proposed circular quasi-
Florentine rectangles in designing polyphase sequence sets. Interestingly, the proposed
polyphase sequence sets are asymptotically optimal with respect to the Welch bound.
The parameters of the asymptotically optimal periodic polyphase sequence sets proposed
till date are listed in Table 1.

The rest of the paper is organised as follows. In Section 2, we fix some notations and
revisit some basic definitions and Welch bound. In Section 3, we introduce the concept of
“circular quasi-Florentine rectangles” and propose a construction when N is of the form
of pn, where p is any prime number. In Section 4, we propose a construction of periodic
polyphase sequence set using the circular quasi-Florentine rectangles and discussed its
optimality with respect to the Welch bound. Finally, we conclude the paper in Section 5.

2 Preliminaries

Let us fix the following notations before we begin:
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Table 1: Polyphase sequences asymptotically achieving the Welch bound.

References Period θmax θa Family Size
Alphabet

Size
Constraint(s)

Sidelnikov [9] pn − 1 1 + p
n
2 1 + p

n
2 pn p p is an odd prime

Welch and Scholtz [10,11] p 2 +
√
p 3 p− 2 p− 1 p is an odd prime

Cubic family by Alltop [12] p
√
p

√
p p p p ≥ 5 is prime

Frank-Zadoff-Heimiller [13] p2 p 0 p− 1 p p is an odd prime

Popovic [14] N
√
N 0 ν(N)† N N = sl2 is odd

Kasami [15] pn − 1 1 + p
n
2 1 + p

n
2 1 + p

n
2 p p = 2

Kumar and Moreno [16] pn − 1 1 + p
n
2 1 + p

n
2 p

n
2 p p is an odd prime

Liu and Komo [17] pn − 1 1 + p
n
2 1 + p

n
2 p

n
2 p p is an odd prime

Moriuchi and Imamura [18] pn − 1 1 + p
n
2 1 + p

n
2 p

n
2 p p is an odd prime

Jang et al. [19] pn − 1 1 + p
n
2 1 + p

n
2 p

n
2 p p is an odd prime

Family A [20, 22] pn − 1 1 + p
n
2 1 + p

n
2 1 + pn 4 p = 2

Family U [21, 22] p(pn − 1) p+ p
n+1
2 p+ p

n+1
2 pn 4 p = 2

Chung et al. [23] p2 − p p p p p p is an odd prime

Zhou et al. [7] pn − 1 p
n
2 1 pn − 1 p(pn − 1) p is any prime

Zhou et al. [7] pn − 1 p
n
2 1 K pK

p is any prime
and K | (pn − 1)

Gu et al. [24] pm − 1 pk−1p
m
2 pk−1p

m
2 pkm − 1 pk(pm − 1)

p is any prime,
k is any integer

Zhang et al. [4] N2 N 0 Fc(N) N

Fc(N) is
the number of rows

of a circular
Florentine rectangle

Proposed N(N − 1) N N FQ
c (N) N

FQ
c (N) is

the number of rows
of a circular quasi-
Florentine rectangle

• x∗ denotes the conjugate of x.

• ⟨x⟩N denotes x (mod N).

Let C = {ci = {ci,t}N−1t=0 : 0 ≤ i ≤ M − 1} be a family of M unimodular polyphase
sequences each of length N . The periodic correlation function between two sequences ci
and cj in C is defined as follows:

θci,cj(τ) =
N−1∑

t=0

ci,tc
∗
j,⟨t+τ⟩N , 0 ≤ τ ≤ N − 1. (1)

when i = j, it is called autocorrelation, otherwise it is cross-correlation. Let us define the
maximum magnitudes of the autocorrelation and cross-correlation of the sequences in C
as follows:

θa(C) = {| θci(τ) |: 0 ≤ i < M, 0 < τ < N},
θc(C) = {| θci,cj(τ) |: 0 ≤ i ̸= j < M, 0 ≤ τ < N}. (2)

Let θmax(C) = max{θa(C), θc(C)}. Accordingly, a sequence set C is said to be an (M,N, θmax)
sequence set.
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Lemma 1. [6] Considering periodic correlation, for a sequence set C with M sequences,
each of length N and periodic correlation tolerance θmax, we have the Welch bound, as
follows

θmax ≥ N

√
M − 1

NM − 1
. (3)

An (M,N, θmax)- sequence set C is said to be optimal, if it satisfies the Welch bound,
with equality. Therefore, we define the optimality factor ρ as follows:

ρ =
achieved θmax

theoretical θmax

, (4)

where “achieved θmax” is the correlation bound achieved through the proposed construc-
tions and “theoretical θmax” is the Welch bound in Lemma 1. In general ρ ≥ 1. When
ρ = 1, we call the sequence set optimal.

3 Circular Quasi-Florentine Rectangles

In this section, first we propose the definition of circular quasi-Florentine rectangles, then
we propose a construction of circular quasi-Florentine rectangles for the cases when N
can be written in the form of pn, where p is any prime number.

Definition 1. A matrix A over ZN is said to be a circular quasi Florentine rectangle, if
it satisfies the following two conditions:

C1: Each row contains N − 1 symbols, where each symbol, except one, occours exactly
once in each row.

C2: For any ordered pair (a, b) of two distinct symbols, and for any integer m from 1
to N − 2, there is atmost one row in which b is m steps right of a, when steps are
considered circularly.

Remark 1. The only difference of circular quasi Florentine rectangle from the circular
Florentine rectangle is that, in circular Florentine rectangle, each row must contains all
the elements of ZN , whereas in circular quasi Florentine rectangle, one element is missing
in each of the rows. Please note that the missing element may be different for each of the
rows.

3.1 Construction of circular quasi-Florentine rectangles

Construction 1. Let p be prime and n be a positive integer. Fp denotes a finite field
with p elements and Fq be the extension field of Fp, where q = pn. Let f(x) be a primitive
polynomial of degree n over Fp. Let α be a primitive element of Fq. The non-zero elements
of Fq can be written in the power of α as {α0, α1, α2, . . . , αq−2}. Let us define a one-to-one
mapping ψ from Fq to Zq which takes the n-tuple to decimal version of the elements in
Zq.
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Example 1. When p = 3, n = 2, and primitive polynomial f(x) = α2 + 2α + 2, the
elements of F9 are

S = {0, 1, α, α2, α3, α4, α5, α6, α7}. (5)

Then,
ψ(S) = {0, 1, 3, 4, 7, 2, 6, 8, 5}. (6)

Theorem 1. Let A be a matrix of order q × (q − 1), defined as follows:

A =




a0,0 a0,1 · · · a0,pn−2
a1,0 a1,1 · · · a1,pn−2
...

...
. . .

...
apn−1,0 apn−1,1 · · · apn−1,pn−2




q×(q−1)

(7)

where,

Ai,j =

{
ψ(αj) for i = 0;

ψ(αj + αi−1) for 0 < i ≤ q − 1,
(8)

and ψ is a one-to-one mapping as defined in Construction 1. Then, A is a quasi Florentine
rectangle of size q × (q − 1), with FQ

c (q) = q.

Proof. To show that A is a circular quasi Florentine rectangle, we need to prove the two
conditions given in Definition 1.

αj and αi−1 are both elements of Fq for 0 ≤ i ≤ (q− 1) and 0 ≤ j ≤ (q− 2), therefore
(αj + αi−1) ∈ Fq. Since, ψ is a one-to-one mapping, and 0 ≤ j ≤ (q − 2), each element of
Zq will appear only once, and it will miss one element. Hence condition C1 of Definition
1 is satisfied.

Next, we prove C2. Let us assume that there are two elements x and y, where y is
m (> 0) steps right of x, circularly, in two rows of A, say r1 and r2, . In r1-th row, let the
position of x be at the cr1x -th column, and y be at the cr1y -th column. Similarly, in r2-th
row, let the position of x be at the cr2x -th column, and y be at the cr2y -th column. Let us
assume 0 < r1, r2 ≤ q − 1. The calculation will be similar if one of them is zero. So, we
have

ar1,cr1x = x = ar2,cr2x , (9)

and
ar1,cr1y = y = ar2,cr2y . (10)

From (9), we have

ψ(αc
r1
x + αr1−1) = ψ(αc

r2
x + αr2−1), (11)

since ψ is a bijection, we have

αc
r1
x + αr1−1 = αc

r2
x + αr2−1. (12)

Similarly, from (10), we have

αc
r1
y + αr1−1 = αc

r2
y + αr2−1. (13)
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Therefore, from (12) and (13), we have

αc
r1
x − αc

r2
x = αc

r1
y − αc

r2
y

= α⟨c
r1
x +m⟩q−1 − α⟨c

r2
x +m⟩q−1 .

(14)

So, we have four cases:

Case 1: When cr1x +m < q−1 and cr2x +m < q−1. In this case, ⟨cr1x +m⟩q−1 = cr1x +m
and ⟨cr2x +m⟩q−1 = cr2x +m. Hence, from (14), we have

αc
r1
x − αc

r2
x = αc

r1
x +m − αc

r2
x +m

= αm(αc
r1
x − αc

r2
x )

(15)

Since 0 < r1, r2 ≤ pn − 1 and r1 ̸= r2, therefore, α
r1−1 ̸= αr2−1. Note that αc

r1
x +

αr1−1 = αc
r2
x + αr2−1. Therefore, αc

r1
x ̸= αc

r2
x . Hence, from (15), we have

αm = 1, (16)

which implies m = 0 or m = q − 1. If m = 0, then it is a contradiction, since we
had assumed m is non-zero. If m = q− 1, then x = y, which is also a contradiction,
since x ̸= y. Hence, C2 of Defintion 1 is satisfied.

Case 2: When cr1x +m > q − 1 and cr2x +m < q − 1. In this case ⟨cr1x +m⟩q−1 =
[(cr1x +m)− (q − 1)] and ⟨cr2x +m⟩q−1 = cr2x +m. Hence, from (14), we have

αc
r1
x − αc

r2
x = α[(c

r1
x +m)−(q−1)] − αc

r2
x +m

= αm(αc
r1
x − αc

r2
x ),

(17)

since, α(q−1) = 1. Hence, similar to Case 1 above, we can show the contradiction.

Case 3: When cr1x +m < q− 1 and cr2x +m > q− 1. In this case, we have from (14),

αc
r1
x − αc

r2
x = α(c

r1
x +m) − α[c

r2
x +m−(q−1)]

= αm(αc
r1
x − αc

r2
x ).

(18)

Case 4: When cr1x +m > q− 1 and cr2x +m > q− 1. In this case, we have from (14),

αc
r1
x − αc

r2
x = α[(c

r1
x +m)−(q−1)] − α[c

r2
x +m−(q−1)]

= αm(αc
r1
x − αc

r2
x ).

(19)

For Case 3 and Case 4 the contradiction can be shown similar to Case 2.

This completes the proof.
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Example 2. When p = 2, n = 3, and primitive polynomial f(x) = x3 + x + 1, using
Theorem 1, we have

A =




1 2 4 3 6 7 5
0 3 5 2 7 6 4
3 0 6 1 4 5 7
5 6 0 7 2 3 1
2 1 7 0 5 4 6
7 4 2 5 0 1 3
6 5 3 4 1 0 2
4 7 1 6 3 2 0




8×7

, (20)

which is a circular quasi-Florentine rectangle, with FQ
c (8) = 8.

Property 1. Let N = pn, where p is prime and n ≥ 1 is an integer. Let A be a circular
quasi Florentine rectangle of size FQ

c (N)× (N − 1) over ZN , given as follows:

A =




a0,0 a0,1 · · · a0,N−2
a1,0 a1,1 · · · a1,N−2
...

...
. . .

...
aFQ

c (N)−1,0 aFQ
c (N)−1,1 · · · aFQ

c (N)−1,N−2




FQ
c (N)×(N−1)

(21)

where ai,j denotes the j-th element of the i-th row. According to Definition 1, each row
of A, i.e., ai for 0 ≤ i < FQ

c (N), is a permutation on ZN , missing one element. For
each 0 < m < N − 1, (ai,⟨j⟩(N−1)

, ai,⟨j+m⟩(N−1)
) ̸= (ap,⟨q⟩(N−1)

, ap,⟨q+m⟩(N−1)
) unless i = p and

j = q, where 0 ≤ i, p ≤ FQ
c (N)− 1, 0 ≤ j, q ≤ N − 2, 0 < ⟨j +m⟩(N−1) < N − 1 and 0 <

⟨q+m⟩(N−1) < N − 1. In other words, if πcQ
i : ZN → ZN be a permutation on ZN , i.e., if

πcQ
i denotes the i-th row of A, then for each 0 < m < N−1, (πcQ

i (j), πcQ
i (⟨j+m⟩(N−1))) =

(πcQ
p (q), πcQ

p (⟨q +m⟩(N−1))) if and only if i = p and j = q, where 0 ≤ j, q < N − 1.

Lemma 2. Let A be a quasi-Florentine rectangle of size FQ
c (N)×(N−1). Let πcQ

i denotes
the i-th row of a quasi Florentine rectangle A. For 0 ≤ i ̸= j < FQ

c (N), πcQ
i (⟨k⟩(N−1)) =

πcQ
j (⟨k + τ⟩(N−1)), has atmost one solution.

Proof. Assume that for 0 ≤ i ̸= j < FQ
c (N), πcQ

i (⟨k⟩(N−1)) = πcQ
j (⟨k+ τ⟩(N−1)), has more

than one solution for 0 ≤ τ < N − 1. Let k1 and k2 be the two solutions. Then, we have
πcQ
i (⟨k1⟩(N−1)) = πcQ

j (⟨k1 + τ⟩(N−1)) and πcQ
i (⟨k2⟩(N−1)) = πcQ

j (⟨k2 + τ⟩(N−1)). Therefore,

we have (πcQ
i (⟨k1⟩(N−1)), πcQ

i (⟨k2⟩(N−1))) = (πcQ
j (⟨k1 + τ⟩(N−1)), πcQ

j (⟨k2 + τ⟩(N−1))). This
contradicts the definition of circular quasi Florentine rectangles. Hence, πcQ

i (⟨k⟩(N−1)) =
πcQ
j (⟨k + τ⟩(N−1)), has at most one solution for each 0 < τ < N − 1 for 0 ≤ i ̸= j <
FQ
c (N).

4 Construction of asymptotically optimal polyphase sequence
sets from circular quasi-Florentine rectangles

Let A be a circular quasi-Florentine rectangle. Then each row of a A is a permutation
over ZN , missing one element, according to C1 of Defintion 1. Let the i-th row of A be
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denoted by πcQ
i , then πcQ

i is a permutation over ZN , which misses one element.

Construction 2. Consider any positive integer N ≥ 2, for which an FQ
c (N) × (N − 1)

circular quasi-Florentine rectangle A exists over ZN . Also let πcQ
i be the permutation

over ZN for 0 ≤ i < FQ
c (N), defined as above, which satisfies Lemma 2. Then for

0 ≤ t < N(N − 1), define hi(t) as follows:

hi(t) = tπcQ
i (⟨t⟩(N−1)), (22)

Construct a sequence set C of order FQ
c (N)×N(N − 1), as follows:

C=




c0
c1
...

cFQ
c (N)−1


=




c0,0 c0,1 · · · c0,N(N−1)−1
c1,0 c1,1 · · · c1,N(N−1)−1
...

...
. . .

...
cFQ

c (N)−1,0 cFQ
c (N)−1,1 · · · cFQ

c (N)−1,N(N−1)−1




FQ
c (N)×N(N−1)

, (23)

where
ci,j = ω

hi(j)
N . (24)

Theorem 2. The sequence set C, derived in Construction 2, is an (FQ
c (N), N(N −

1), θmax) polyphase sequence set over ZN , with θmax = N .

Proof. The size of C is FQ
c (N) × (N − 1). For 0 ≤ i, j < FQ

c (N), and 0 ≤ τ < L, where
L = N(N − 1), we have

θci,cj(τ) =
L−1∑

k=0

ci,k
(
cj,⟨k+τ⟩L

)∗

=
L−1∑

k=0

ω
hi(k)
N

(
ω
hj(k+τ)
N

)∗

=
L−1∑

k=0

ω
kπcQ

i (⟨k⟩(N−1))−(k+τ)πcQ
j (⟨k+τ⟩(N−1))

N

=
N−2∑

k0=0

ω
−τ1πcQ

j (⟨k0+τ0⟩(N−1))

N ·
N−1∑

k1=0

ω
k1(π

cQ
i (⟨k0⟩(N−1))−πcQ

j (⟨k0+τ0⟩(N−1)))

N

(25)

where k0 = ⟨k⟩N−1, k1 = ⟨k⟩N , τ0 = ⟨τ⟩N−1, and τ1 = ⟨τ⟩N . We have the following cases:

• Case I: when i = j, τ0 = 0 and τ1 = 0. In this case, from (25), we have

θci(0) = N(N − 1). (26)

• Case II: when i = j, τ0 = 0 and τ1 ̸= 0, we have from (25)

θci(τ) = N
N−2∑

k0=0

ω
−τ1πcQ

i (⟨k0⟩(N−1))

N (27)
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πcQ
i (k0) is a permutation on ZN , missing one element, according to the construction.

Let that missing element be t, then (27) becomes

θci(τ) = Nω−τ1·tN . (28)

Therefore, in this case | θci(τ) |= N .

• Case III: when i = j, τ0 ̸= 0, we have from (25),

θci(τ) =
N−2∑

k0=0

ω
−τ1πcQ

i (⟨k0+τ0⟩(N−1))

N ·
N−1∑

k1=0

ω
k1(π

cQ
i (⟨k0⟩(N−1))−πcQ

i (⟨k0+τ0⟩(N−1)))

N . (29)

Since πcQ
i (k0) is a permutation missing one element, so πcQ

i (⟨k0⟩(N−1)) ̸= πcQ
i (⟨k0 +

τ0⟩(N−1). Hence,
N−1∑

k1=0

ω
k1(π

cQ
i (⟨k0⟩(N−1))−πcQ

i (⟨k0+τ0⟩(N−1)))

N = 0. (30)

Therefore, in this case | θci(τ) |= 0.

• Case IV: when i ̸= j, we have from (25),

θci,cj(τ) =
N−2∑

k0=0

ω
−τ1πcQ

j (⟨k0+τ0⟩(N−1))

N ·
N−1∑

k1=0

ω
k1(π

cQ
i (⟨k0⟩(N−1))−πcQ

j (⟨k0+τ0⟩(N−1)))

N (31)

Note that πcQ
i (⟨k0⟩(N−1)) − πcQ

j (⟨k0 + τ0⟩(N−1)) = 0 has atmost one solution as per
Lemma 2. Therefore, if there is no solution then

N−1∑

k1=0

ω
k1(π

cQ
i (⟨k0⟩(N−1))−πcQ

j (⟨k0+τ0⟩(N−1)))

N = 0, (32)

hence, | θci,cj(τ) |= 0. However, if there is a solution, let k′0 be the solution. Then
we have from (31),

θci,cj(τ) = N · ω−τ1π
cQ
j (⟨k′0+τ0⟩(N−1))

N

+
N−2∑

k0=0
k0 ̸=k′0

ω
−τ1πcQ

j (⟨k0+τ0⟩(N−1))

N ·
N−1∑

k1=0

ω
k1(π

cQ
i (⟨k0⟩(N−1))−πcQ

j (⟨k0+τ0⟩(N−1)))

N

= N · ω−τ1π
cQ
j (⟨k′0+τ0⟩(N−1))

N .

(33)

Hence, in this case | θci,cj(τ) |= N .

Therefore, combining all the cases, we have θmax(C) = N . This proves the theorem.
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4.1 Discussion on optimality

Theorem 3. Let C be the sequence sets with parameters (FQ
c (N), N(N − 1), N), as pro-

posed in Theorem 2. Then C is an asymptotically optimal polyphase sequence set with
respect to the Welch bound.

Proof. From (4), we have

ρ =
N

N(N − 1)

√
FQ
c (N)−1

N(N−1)FQ
c (N)−1

. (34)

After some routine calculation we get

ρ =
1√

1− 1
N

√
1− 1

FQ
c (N)N(N−1)√

1− 1

FQ
c (N)

(35)

Hence, for the cases when N →∞, FQ
c (N)→∞, we have lim

N→∞
ρ = 1.

Since in our case for N = pn, FQ
c (N) = pn, we have lim

N→∞
ρ = 1. Hence, the proposed

sequence sets are asymptotically optimal.

Next we give an example of the proposed polyphase sequence sets.

Example 3. Let p = 2, n = 3, then N = 23 = 8. Using the circular quasi-Florentine
rectangle constructed in Example 2, following Construction 2, we obtain asymptotically
optimal polyphase sequence set C over Z8 with parameters (8, 56, 8). A glimpse of the
periodic autocorrelation and cross-correlation among the sequences are shown in Fig. 1.

5 Conclusion

In this paper, we have introduced a new concept of circular quasi-Florentine rectangle and
proposed a construction of circular quasi-Florentine rectangle of size FQ

c (N)×N when N
is of the form pn, where p is any prime number. We have also proposed a class of polyphase
sequences using the circular quasi-Florentine rectangles which are asymptotically optimal
with respect to the Welch bound.
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